Virtual Sputter Chamber - Multiphysics Simulation of Magnetron Sputter & Deposition

<u>Chris Walton</u>, George Gilmer, Luis Zepeda-Ruiz, Matt McNenly, John Verboncoeur*, Scott Wilks, Troy Barbee

> Lawrence Livermore National Laboratory Physical Sciences Division

> > *Department of Nuclear Engineering University of California, Berkeley

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract # DE-AC52-07NA27344

Chemistry • Materials • Earth • Life Sciences

Outline

- 1) Magnetron sputter in 4 easy pieces our approach, and current status
- 2) Side topic: modeling ion-beam deposition for ultra-clean coatings
- 3) Future work 3D
- 4) Conclusions

Magnetron Sputter Deposition is a big economic activity, but a great deal is unknown about the physics

- Annual sales for sputter targets alone: \$3B projected for 2010
- There is no accepted process model for low-pressure MSD to predict:
 - Thickness uniformity
 - Bombardment energies at substrate
 - Angular distributions of arriving atoms
- Existing process simulations depend on assumptions of continuum fluid behavior and Maxwellian energy distributions
 - limited accuracy at low pressures
 - no atomistic information

Chemistry • Materials • Earth • Life Sciences

LLNL needs hollow Be spheres as laser fusion targets (National Ignition Facility, NIF)

¹B. J. Kozioziemski, J. D. Sater, J. D. Moody, et al., Journal of Applied Physics **98**, 103105 (2005).

Chemistry • Materials • Earth • Life Sciences

C. C. Walton et al. EUV Litho 2010

LLNL has a long-standing interest in thin-film optics

Work by Vernon, Stearns, Barbee, Mirkarimi, Soufli, Jankowski...

Applications: telescope mirrors, fusion diagnostics, and of course EUVL

⇐ Example case of Zr/C multiband optical coating (TEM crosssection)

- Individual layers range from 0.4nm to 8nm
- Five different layer pitches superimposed
- Thicknesses controlled to ~0.1% accuracy and uniformity across the part

We are building a model of the full process, divided into 4 physics steps

>> Credit due to Dr. Jacques Kools for proposing this work (J. C. S. Kools, in SVC - 47th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2004), p. 31.) ③

Chemistry • Materials • Earth • Life Sciences

C. C. Walton *et al.* EUV Litho 2010

Step 1 (Plasma)VALIDATION: we validated against published Langmuir-probe plasma measurements

Particle-In-Cell method:

- 1) Divide domain in cells containing simulated particles (about 1e6 ratio of real/simulated)
- 2) Solve equation of motion iteratively, with self-consistent E and B: interpolate Q and I source terms, calculate fields on mesh points, interpolate fields at particle positions, move, REPEAT
- 3) XOOPIC code managed at UC Berkeley¹

¹J.P. Verboncoeur, A.B. Langdon and N.T. Gladd, "An Object-Oriented Electromagnetic PIC Code", Comp. Phys. Comm., 87, May11, 1995, pp. 199-211.

Chemistry • Materials • Earth • Life Sciences

C. C. Walton et al. EUV Litho 2010

Science & Technology A 20, 2032 (2002).

2D PIC plasma model

Step 2: (Impact at target and sputter): Molecular Dynamics is wellestablished for problems like this one

MD simulation: 1keV Ar hitting Cu

We use Kalypso MD code.¹

¹Karolewski, M.A., *Kalypso: a software package for molecular dynamics simulation of atomic collisions at surfaces.* Nucl. Instrum. & Methods B **230**(1-4) 402-5. (2005)

Chemistry • Materials • Earth • Life Sciences C. C. Walton *et al.* EUV Litho 2010

Step 2: - Impact at target and sputter - VALIDATION: MD reproduces experiment well for sputter yield and sputtered-atom angular distribution

Chemistry • Materials • Earth • Life Sciences C. C. Walton

Step 2 – sputter - RESULTS: Angle distributions of Be and reflected Ar are very different: Be is approximately cosine, while Ar leaves at nearly normal incidence

3rd step - transport to substrate – VALIDATION: Simulation reproduces thickness profiles to within ~10%

Studying film thickness profiles vs distance:

3rd step - transport to substrate – SIDE POINT OF INTEREST: When run at high power, there is significant (1.1 to 2X) heating, pressurization, and rarefaction of gas in front of a magnetron

<u>Conditions:</u> •6-inch circular magnetron @ P = 2kW •sputtering Cu in Ar •P = 4Pa

Chemistry • Materials • Earth • Life Sciences

C. C. Walton *et al.* EUV Litho 2010

Steps 1-3 RESULTS: At substrate, target-reflected Ar has more energy than the sputtered Be atoms

Chemistry • Materials • Earth • Life Sciences

C. C. Walton *et al.* EUV Litho 2010

Application to SiC films: can we improve on roughness/stress tradeoff?

With increased sputter pressure, compressive stress is greatly reduced, but at the expense of roughness:

Can we model these results with rational physical processes, and better understand what drives roughness evolution?

Application to SiC: We have used the 3 working model components together for the first time (target impact, neutral transport, film growth).

Simulate sputter, transport and growth of SiC, with varying pressure.

<u>Stretch goal</u>: reproduce increase of roughness with pressure. (Not shooting for stress yet!)

Chemistry • Materials • Earth • Life Sciences

Application to SiC: we obtain angle and energy distributions of all species <u>leaving the target</u>

Ar: dominated by low-T "thermal" background – improved sampling needed to capture high-energy tail.

Application to SiC: ... and also angle and energy distributions of all species <u>at the substrate</u>

Angle distribution

Energy distribution

Application to SiC: Pressure effect could not yet be simulated – simulated effect of angular distribution as analog

Roughness of simulated SiC films (using very rough analogs for pressure)

Roughness of simulated film shows very preliminary resemblance to experimental results

PSDs of experimental and simulated films:

Experimental results by Regina Soufli (LLNL)

Application to Be films: Increased Ar bombardment (for example from bias) causes decreased roughness

Application to Be films: Simulations show bias favoring (101) film texture, consistent with experiment

Chemistry • Materials • Earth • Life Sciences

We are beginning to study stress-producing mechanisms directly using these tools. First mechanism is compressive stress from Ar implantation:

All the calculated energies can be input to a thermal model of substrate and fixturing

Going parallel: we expect to have new plasma code (3D and parallel) online this summer

VORPAL code (Tech-X Corp., Boulder, CO)

Summer student Venkattraman Ayyaswamy to work on VORPAL magnetron:

- 1) Validate against experiments used to validate 2D model
- 2) Examine 2D/3D agreement
- 3) Examine effects of target wear (in experiments voltage changes 20% as target wears, and critical [Ar] in the film drops 2X why?)

Side topic in EUVL: Plasma modeling could be used strengthen previous model used in EUVL: particle transport in ion-beam sputter chamber

Walton, C.C., Kearney, P.A., Folta, J.A., Sweeney, D.L., Mirkarimi P.B. *Understanding particle defect transport in an ultra-clean sputter coating process.* Proceedings of SPIE - the International Society for Optical Engineering, 2003. **5037**: p. 470.

Chemistry • Materials • Earth • Life Sciences

C. C. Walton *et al.* EUV Litho 2010

Side topic in EUVL: the particle transport model reproduced general trend of density of particles deposited in different locations

Summary

- 1) We are building a multi-physics simulation of magnetron sputter deposition, breaking down to 4 steps
- 2) Some validation achieved of each step independently
- 3) Largest limitation for now is computation speed and model validation for plasma dynamics
- 4) Now using all 4 parts of simulation together
- 5) Promising but lots of work still to do!

THANK YOU!

BACKUP SLIDES

Step 3 – Transport - VALIDATION:

We compared DSMC results to published published pressure vs position

¹S. M. Rossnagel, Journal of Vacuum Science & Technology A-Vacuum Surfaces & Films 6(1) 19 (1988)

Comparison of simulated local gas pressure to Rossnagel experiment:

Scatter in simulation results comes from instability in simulated pressure inside the measurement tube – working on whether this is an artifact of radial weighting.

Step 1 (Plasma) RESULTS: we calculated energy and spatial distributions of Ar⁺ hitting the target

Snapshot of electron paths

Resulting impact distribution at target: N(r, E)

Modeling a circular magnetron:

Thermal model of pan improved in geometries and emissivities; results need further examination

Temperature map of 2D axial model, single shell in center of pan:

Steady state: T = 415K T = 410K	Temp max 414. w: 410. v: 405. u: 400. t: 395. s: 390. r: 385. q: 380. p: 375. o: 370. n: 365. m: 360. 1: 355. k: 355. k: 350. j: 345. i: 345. i: 345. j: 345. i: 340. h: 335. g: 330. f: 325. c: 320. d: 310.	T (degC)	 180 FEM heat-flow model of pan and shell: Ramped unset of heating slightly – greatly speeds simulation time to about 10min from several hours Improved some dimensions and thermal boundary conditions Still includes only energy from sputtered atoms and reflected neutrals, not plasma effects or hot-gas and uction. Simple to add plasma results when ready Mair cooling path is along the shaft She I and pan all ~ isothermal at ~`135°C Similar work with Troy's file is "Basic heating curve of shelt" [IV-heating shields that the substitute Carl State at Key to substrate therma@Management 4@ould refine for those here t (s) Discussion: what would be useful results to you from this model?
-t- -d- Still to add:	d: 313. c: 310. b: 305. a: 300. min 300.		

- Gas heating (and cooling!), plasma heating (ion and electron bombardment)
- Possibly add shield and wall below pan what is geometry?
- Emissivity of rough Be surface on pan unknown study sensitivity to this. Interested in any experimental temperatures LLNL or GA has.

Result: clusters of test particles were strongly deflected by the ion beam

Message:

- a) We have some understanding of particle transport by beam
- b) Beam can accelerate micron-size particles to 10-30m/s

Comparison with experiment #2: spatial distribution of "native" particles over 3 witness wafers

Experiment in test chamber: (top view)

We are working on using microstructure simulations to understand and control film stress

Film stress is generally believed¹ to be a competition between open grain boundaries producing *tension* and packed (or implanted) interstitials causing *compression*.

Approach: study grain boundary width and porosity vs thickness, using the KMC microstructure simulations discussed above. Simulated Be results:

Chason, E., et al., Origin of compressive residual stress in polycrystalline thin films. Physical Review Letters, 2002. 88(15): p. 156103/1-4.
 Zepeda-Ruiz, L.A., et al., Understanding the relation between stress and surface morphology in sputtered films: Atomistic simulations and experiments - art. no. 151910. Applied Physics Letters, 2009. 95(15): p. 51910-51910.

Chemistry • Materials • Earth • Life Sciences

C. C. Walton *et al.* EUV Litho 2010

Agreement with of predicted microstructure with experiment is also promising, but not yet satisfactory

Simulation:

Experiment:

Simulation resembles experiment on qualitative points:

- 1) Columnar grain film structure, with grain coarsening
- 2) Tilting of grains with tilting of substrate
- 3) Separation of grain boundaries after first ~10nm
- 4) Dome-shaped grain tops

Disagreement with experiment remains on:

- 1) Asymptotic grain width
- 2) Onset thickness for grain separation. <u>Separation critical to film stress</u>.

SEM photo courtesy Andy Detor, LLNL We can simulate polycrystalline films and larger size scales with Kinetic Monte Carlo. Results show grain growth, grooving, and doming.

