Developing a New State of the Art EUV Mask Imaging Research Tool at Berkeley

Kenneth A. Goldberg, Iacopo Mochi, James Macdougall, Nathan S. Smith, Senajith B. Rekawa, Erik Anderson, Eric Gullikson, Patrick Naulleau

Center for X-Ray Optics Lawrence Berkeley National Laboratory

KAGoldberg@lbl.gov

EUVL Workshop 2011

The SEMATECH Berkeley Actinic Inspection Tool (AIT)

λ: 13.2–13.6 nm NA (4x): 0.25–0.35, ∠6° Mag: ~900x

all EUV

CCD

Si₃N₄

5 lenses—different mag and NA

Goldberg, SPIE 7122, (2008)

Synchrotron

Primary AIT users in 2010/11

THE CENTER FOR X-RAY OPTICS

IE Programmed Pattern Defects

Mask: SMOCOL2 / Gallagher, Badger, unpublished 2011

Defect A3-B30

IEM Programmed Pattern Defects

Mask: SMOCOL2 / Gallagher, Badger, unpublished 2011

Defect A3-D30

(intel) Native Pattern Amplitude Defect

(intel) Native Pattern Amplitude Defect

(intel) Native Pattern Amplitude Defect

(intel) Native Pattern Phase Defect

(intel) Native Pattern Phase Defect

(intel) Native Pattern Phase Defect

(in	tel) P	S L	Goldberg, <i>JVSTB</i> (2011) Liang, <i>SPIE</i> 7823 (2010)						
1.2						- 41			9
							~		0
0.0							•	~	0
↑ SI									1
focu						•	•		•
1.5 μm						•			•
<i>h</i> [nm] ? × FWHM ??		1.0 × 43	1.0 × 51	1.0 × 60	1.0 × 70	1.4 × 80	1.5 × 90	1.5 × 100	1.6 × 120

(intel)	Goldberg, <i>JVSTB</i> (2011) Liang, <i>SPIE</i> 7823 (2010)							
1.2						n.		9
		1				a)		0
0.0						Cuto	~	0
↑ ∽								
focu								•
1.5 μm								•
<i>h</i> [nm] ? ×	1.0 ×	1.0 ×	1.0 ×	1.0 ×	1.4 ×	1.5 ×	1.5 ×	1.6 ×
FWHM ??	43	51	60	70	80	90	100	120

SAMSUNG

Buried phase defects

AIT Images A pattern position shift...

S. Huh, SPIE 2011

SAMSUNG

.Å^

S. Huh, SPIE 2011

SAMSUNG

Å,

Speckle from ML phase roughness

Goldberg, Mochi, Naulleau, George (2008), unpublished

GLOBALFOUNDRIES

See Poster:

I. Mochi 7969-67

0.5 *µ*m

Phase imaging

EUVL Symposium 2010

GLOBALFOUNDRIES

See Poster:

I. Mochi 7969-67

0.5 *µ*m

Phase imaging

EUVL Symposium 2010

GLOBALFOUNDRIES

See Poster:

I. Mochi 7969-67

0.5 *µ*m

Phase imaging

EUVL Symposium 2010

The AIT

The AIT's line contrast reaches down to 16 nm

Wallow, Mochi, Goldberg: Mask MET10

AIT: Calculated performance

AIT Limit

The AIT is 7 years old.

That's 65 in *litho* years.

Photo: Stefan Tell

Higher resolution needs <u>high NA</u> and σ control 11 nm 16 nm 32 nm 8 nm 22 nm 0.35 NA 0.8 σ 0.45 NA 0.8 σ 0.62 NA 0.8 σ

13+ years of actinic mask inspection/imaging

KAGoldberg@lbl.gov, EIPBN 2010 / EUVL Workshop 2010

Review: Goldberg, *JVST B* **28** (6), C6E1-10 (2010)

- Zoneplate-lens imaging
- 0.25–0.625 4×NA
- Programmable coherence, σ
- Full-mask xy navigation
- 5–10 pts/hr, higher SNR
- Synergistic with MET5

Generations Ahead

Calculations: K. Goldberg

beam diagnostics

KB mirrors

Synchrotron Source

- bending magnet
- $\lambda/\Delta\lambda = 1500$
- narrow divergence

condenser zoneplates mask

angle

scanner

Fourier-Synthesis Illuminator

Naulleau

mask

condenser

Fourier-Synthesis Illuminator

pupil

Fourier-Synthesis Illuminator

mask

diamond-turned

- HSQ smoothed
- ML coated

condenser

Soufli, *Opt. Eng.* **43** (12), 2004. Salmassi, *Appl. Opt.* **45** (11), 2006.

Fourier-Synthesis Illuminator

pupil

Fourier-Synthesis Illuminator

mask

condenser

Fourier-Synthesis Illuminator

mask

pupil

Fourier-Synthesis Illuminator

condenser

Fourier-Synthesis Illuminator

condenser

adjustable azimuth

pupil

mask

Fourier-Synthesis Illuminator

condenser

adjustable azimuth

pupil

mask

AIT5 SEMATECH & LBNL

Goldberg, *SPIE* **7969** (2011)

Zoneplate objective lenses arrayed by NA

Zoneplate objective lenses arrayed by azimuthal angle

What about *power*?

AIT

AIT5

AIT 6.7?

Beamline Power @ ALS

Advanced Light Source (ALS) @ LBNL

CCD

CCD

CCD

Mirrors: (0.45 / 0.65)⁴ ≈ 0.25

CD

Mirrors: (0.45 / 0.65)⁴ ≈ 0.25 ZP: ≈ 0.5 (bandwidth / 2)*

challenging at high-NA

CCD

Mirrors: (0.45 / 0.65)⁴ ≈ 0.25

ZP: ≈ **0.5** (bandwidth / 2)

CCD: ≈ **0.8** (detection)

CD

Mirrors: (0.45 / 0.65)⁴ ≈ 0.25

ZP: ≈ **0.5** (bandwidth / 2)

CCD: ≈ **0.8** (detection)

Beamline: ≈ 5.6 (power)

Mirrors: (0.45 / 0.65)⁴ ≈ 0.25

ZP: ≈ **0.5** (bandwidth / 2)

CCD: ≈ **0.8** (detection)

Beamline: ≈ **5.6** (power)

Total: ≈ 1/2 power ≈ 1/4 ph

Mirrors: (0.45 / 0.65)⁴ ≈ 0.25

ZP: ≈ **0.5** (bandwidth / 2)

CCD: ≈ **0.8** (detection)

Beamline: ≈ **5.6** (power)

Total: ≈ 1/2 power ≈ 1/4 ph

It will work at 6.7 nm!

AIT > 16 nm low σ ∠6° AIT5 > 6 nm any σ up to $\angle 10^{\circ}$ AIT5 > 6 nm $any \sigma$ up to $\angle 10^\circ$

AIT6.7 > ? nm any σ up to $\angle 10^{\circ}$

The AIT team

lacopo Mochi Project Scientist

James Macdougall Graduate Student

Nathan Smith Engineering Associate

Seno Rekawa Chief Engineer

Ken Goldberg Principal Investigator

Harry Kwon Project Manager

David Chan Mask Strategy

Bryan Rice Director of Lithography

This work was supported by SEMATECH, through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

visit AIT5.lbl.gov

AIT / AIT5 is now hiring