EUV Spectra of Gadolinium Laser Produced Plasma

<u>Colm O'Gorman¹</u>, Bowen Li¹, Takamitsu Otsaku², Takeshi Higashiguchi², Akiro Endo³, Tony Donnelly¹, Thomas Cummins¹, Deirdre Kilbane¹, Padraig Dunne¹, Emma Sokell¹ and Gerry O'Sullivan¹

1 : School of Physics, University College Dublin, Dublin 4, Ireland

2 : Department of Advanced Interdisciplinary Sciences and Centre of Optical Research

and Education (CORE), Utsunomiya University, Utsunomiya, Tochigi, Japan

3: Forschungszentrum Dresden, Dresden, German

1.Introduction

*•Development of sources below 13.5nm is a challenge for EUVL.

 $^{44}_{45}$ •EUV emission at 6.xnm could be coupled with a La/B₄C multi layer mirror to make a next generation light source.

⁷⁰•Gadolinium has been previously shown to have large UTA emission peaking at 6.75nm[1,2]

Figure 1: UTA emission from the elements of Cesium to Lutetium [1]

100

150

λ 50

2.Experimental Setup

160ps, 1064nm, Nd:YAG laser •A pulse with energy of 450mJ irradiated the target.

3. Atomic Calculations

Figure 2: Image of target chamber used

• A range of power densities was achieved by varying the lens – target distance.

 Spectra from the plasma were analysed using a 2-meter grazing incidence soft x-ray spectrometer, shown in figure 3[3].

200 A

Figure 3: Schematic of Schwob/Fraenkal soft x-ray spectrometer

Figure 4: Cowan code calculations of spectral output from Gd XVII - GdXXVII

•UTA statistics Of Cowan code calculations show that 4d - 4f, 4p - 4d are the main contributing transitions in the 6.x-nm region.

Figure 5: *Mean wavelength emission as a function of ion stage*

4. Theoretical Spectra

5. Experimental Spectra

Figure 6: Gd Ion fractions as function of electron temperature

Figure 7: Theoretical Gd spectra at different electron temperatures

code spectral •Cowan output weighted was with CR model [4] ion fractions to give theoretical at spectra various n_e and T_e

•A range of power densities was achieved by varying the lens target distance.

Figure 8: Theoretical Gd spectra at different electron temperatures

•Experimental spectra from Gd_2O_3 plasma along with theoretical calculations^[3] are shown in figure 4

•An electron temperature of 200 eV was found to give the best agreement with experiment

6.Future Work

•Further spectral analysis

•Absolute intensity measurements will be made with a photodiode and Mo/B_4C coupled detector. This will allow the measurement of conversion efficiency.

•Ion emission will be characterised using an electrostatic spherical sector analyser.

7.References

[1] A Spectroscopic Study of Laser Produced Plasmas of the Rare Earth and Related Elements–G.O' Sullivan– Ph.D Thesis - 1980

[2] EUV spectra of Gd and Tb ions excited in laser-produced and vacuum spark plasmas – S.S. Churilov, R. R. Kildiyarova, A. N. Ryabtsev, and S. V. Sadovsky - Phys. Scr. 80 045303 (2009)

[3] High Resolution duo-mulitchannel soft x-ray spectrometer for tokamak plasma diagnostics – J.L. Schwob – Rev. Sci. Instrum. **59** (9) (1987)

[4] X-ray emission in laser-produced plasmas - D. Colombant and G.F. Tonon – J. Appl. Phys., 44 (8) (1973)

Acknowledgements: This work was supported by Science Foundation Ireland under grant number 07/IN.1/I1771.

contact: colmogorman@ucd.ie

