
Figure 4: Schematic of pulse shortening chamber

Laser Plasma Pumping by Varying-length CO2 Laser Pulses

1.Introduction

• Research to date [1] has identified CO2 laser produced plasmas (LPPs) of 
Sn as a viable Extreme Ultra-violet Lithography (EUVL) source candidate

• CO2 LPPs have demonstrated an increased in-band conversion efficiency 
(CE) when compared to the Nd:YAG, due in the main to reduced opacity 
effects [2]

• Altering the density scale length of the target by using droplet or 
plasma targets have demonstrated improved absorption of the incident 
CO2 pulse as compared with planar targets with a CE of 4% reported [3]

• Plasma confinement using wedge targets have shown a CE of 5% [4]. 
However numerical simulations have shown the possibility of further 
increasing the CE for CO2 LPPs to 7% [5]
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2.Experimental set-up

3.Results

Figure 1: Laboratory set-up for double pulse experiments

• The interaction of the CO2 main pulse with the Nd:YAG seed plasma 
resulted in maximum CE of 2.5% compared to 1.7% on planar targets

• CE is lower than reported due to low power density of TEA-CO2 laser, 4 x 
109 W/cm2

• A novel and simple plasma 
shutter device Fig. 4, has been 
developed 

• Pulses are clipped by focussing 
them onto highly reflective 
surfaces

• Durations as low as 2 ns 
achieved

• These shortened pulses can be passed through an amplifying 
medium to increase the energy and hence pulse intensity

• Improved CO2 pulses will be incident on a range of novel solid, 
mass limited and plasma targets for further EUV research
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Experimental parameters

Nd:YAG pre-pulse: 10 mJ (5 x 108 W/cm2) and 290 mJ for 2 spot 
diameters

TEA-CO2 pump laser: 290 mJ in 60 ns (1.2 J in 500 ns total 
pulse)

Delay between pulses: 0 ns–2 µs

Timing jitter: ~15 ns

Spectrometer range: 9.6–18 nm

Focussing: f/10 cm lenses for both lasers

Nd:YAG focused spot diameters 
= 50 µm and ~ 200 µm
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Figure 3: Double pulse Sn spectrum

Figure 5(a),(b),(c) and (d): Resulting reflected pulses for various 
power density incident on reflector surface by varying lens position

Figure 2(a) & (b): Double pulse CE observed using 300 mJ out of focus and 10 mJ tightly focussed 
Nd:YAG seed plasma

• Fig. 3 shows how optically thin the 
plasma produced is in the in-band region

• This shows the ability to increase the on 
target laser intensity further without self-
absorption

• Atomic modelling codes can be used to 
confirm these features in the 13.5 nm 
band 


