Status of multilayer coatings for EUV Lithography

Yuriy Platonov¹, Jim Rodriguez¹, Michael Kriese¹ Eric Louis², Torsten Feigl³, Sergey Yulin³,

¹ Rigaku Innovative Technologies, 1900 Taylor Rd., Auburn Hills, MI 48326, USA, www.rigaku.com
 ² FOM Rijnhuizen, PO Box 1207, 3430 BE Nieuwegein, The Netherlands
 ³ Fraunhofer IOF, Albert Einstein Strasse 7, D-07745 Jena, Germany

IOF

FOM Institute for Plasma Physics Rijnhuizen, The Netherlands

<u>Outline</u>

- Introduction
- Performance versus Specifications
- Best ML performance
- ML stability
- ML coatings infrastructure
- ML for Next Generation EUVL
- Multilayer technology readiness for HVM
- Conclusion

ASML NXE Scanner Requires 11+ ML Optics

Is today's ML deposition technology ready for HVM?

- ML performance versus specification
- ML parameters to improve
 - Feasibility for improvement
- Infrastructure and capacity
 - Deposition facilities
 - Metrology
 - Substrates suppliers

Defects in mask blanks

Innovative Technologies

Sungmin, et al, (Samsung Electronics) in Proc. SPIE Vol. 7969 (2011)

"Pit defects are the most dominant, accounting for on average 75% of defects observed. ... The remaining 25% of the defects are due to particles deposited during the deposition process."

presented by O. Wood: 2010 Maui Workshop

Collector for NXE3100

Multilayer optics for EUV and beyond

$\lambda = 13.5 \text{ nm}$

LPP collector coating challenges

R > 65 % $\lambda = (13.500 \pm 0.050) nm$

→ ∆d = 0.025 nm = 25 pm

Diameter: > 660 mm
 Lens sag: > 150 mm
 Tilt: > 45 deg
 Weight: > 40 kg

Reflectivity radial uniformity

Reflectivity of LPP collector mirror

Maximum reflectance along four lines within clear aperture of collector mirror:

R ~ 65% @ r < 240 mm R ~ 59% @ r = 250 ... 320 mm

Measurements: PTB Berlin

Collector optics deposition at RIT Innovative Technologies

Preliminary results: 3 weeks after install

median λc ranged 13.77 @ 50mm to 13.33nm @ 200mm total height range (sag) is 97mm angle of surface is 13° - 49°

Illuminator: Reflectivity 1

Illuminator: Reflectivity 2

Projection optics: towards to HVM

Provide the second state of the second state o

ightarrow 69.7% Reflectance at local angle of incidence

→ ~50% higher transmission of the PO-BOX

Non correctable added figure error

radial distance [mm]

Coating added figure error less then 35 pm Spec is 100 pm

Reticle Imaging Microscope (RIM, 2005)

- 4 condensor (1 Ru, 3MoSi)
- 2 imaging (MoSi)
- Added Figure Error in imaging optics:
 - M1: 0.015nm
 - M2: <0.010nm

H.Glatzel et al. Characterization of prototype optical surfaces and coatings for the EUV Reticle Imaging Microscope, Proc. of SPIE, Vol. 5751 (2005), 1162 – 1169.

Spec and achieved performance

Application	Parameter	λ _c , nm	Δλ _c , nm	Rp, %	ΔRp, %	Stress, MPa	Defects, cm ⁻²	Figure Error, nm rms
Mask blanks	Spec	±0.030 (i)	±0.025 (i)	≥ 67 (a)	±0.025 (a)	200 (a)	< 0.003 (a)	
	Achieved	±0.006 (b)	±0.010 (b)	67.1 (c)	±0.025 (b)	200-400 (b)	0.05 at 56nm (c)	
Collector	Spec		±0.05 (j)					
	Achieved	±0.020 (j)	±0.015 (j)	65 (j)	±5 (j)			
Illuminator	Spec		±0.014	≥ 67 (f)	±1 (g)	100 (a)		
	Achieved	±0.010 (d)	±0.014 (e)	69.1(f)	±0.2 (g)	35 (f)		
Projection optics	Spec			≥ 67 (f)	±1.0 (g)			0.0014 (f)
	Achieved	±0.010 (d)	±0.008 (d)	69.1(f)	±0.02 (g)	35 (f)		0.0002 (f)

Innovative Technologies

Best ML performance

Maximum EUVL reflectivity - I Innovative Technologies

70.5% @ 13.3 nm70.15% @ 13.5 nm

Maximum EUVL reflectivity - Il Innovative Technologies

Multilayer optics for EUV and beyond

 $\lambda = 13.5 \text{ nm}$

Enhancement of Reflectivity by Interface Engineering

Stress in ML coatings

P.B. Mirkarimi et al, Opt. Eng. 38, 1999

- Stress compensation
- No effect on reflectance Erwin Zoethout et al, SPIE 5037, 2003

FOM Institute Rijnhuizen

ML stability

- Temperature stability
 - -Barrier layers
- Radiation stability

-Capping layer

Temperature stability

Innovative Technologies

System	Temperature range	R _{13.5 nm} %	FWHM, nm	
MoSi ₂ /Si	≤ 500°C	41.2	0.26	
Mo/C/Si/C	≤ 250°C	59.6	0.54	
Mo/X ₁ /Si/X ₁	≤ 400°C	60.0	0.49	
Mo/X ₂ /Si/X ₂	≤ 500°C	58.8	0.50	

Mo/Si taken from: C. Montcalm, Eng. Opt. 40, 469 (2001) others from: S. Yulin, SPIE 5751, 1155 (2005)

E.D. van Hattum¹, S. Alonso van der Westen¹, P. Sallé¹, K.T. Grootkarzijn¹, E. Zoethout¹, R. van de Kruijs¹, E. Louis¹, S. Bruijn¹, J. Bosgra¹, A. Yakshin¹, G. von Blanckenhagen², H. Enkisch², S. Müllender², and F. Bijkerk^{1,3}

Maui EUVL Workshop, 14-17 June 20 an Jose, 2010

Substrate

Substrate

Radiation stability

Capping layers for EUV lithography optics protection

Multilayer conception

Photo catalytic properties

Fraunhofer

IOF

Radiation stability

Infrastructure

- Deposition facilities
- ML Performance Metrology
- Substrates

Innovative Technologies

ML deposition facilities

Carl Zeiss SMT GmbH

Ostalb, Region Ost-Württemberg, Baden-Württemberg Rudolf-Eber-Str. 2 73447 Oberkochen Germany

Innovative Technologies

ZEISS

EUVL multilayer coating development

E. Louis, E. Zoethout, R.W.E. van de Kruijs, I. Nedelcu, A.E. Yakshin,

(San Jose, 2005)

S. Alonso van der Westen, T. Tsarfati, and F. Bijkerk FOM Institute for Plasma Physics Rijnhuizen, the Netherlands

H. Enkisch, G. Sipos, S. Müllender, and P. Kürz

Carl Zeiss SMT AG, Oberkochen, Germany

EUV application specific coating facility

- Based on 'FOM coating process'
- Allows deposition of >500 mm optical diameters
- UHV conditions (4x10-9 mbar)
- New ways of layer plasma treatment
- Improved layer thickness control (x-ray monitoring)
- Reflectance at 13.5 nm 67%
- Wavelength matching P/V 0.15%
- Lateral uniformity of periodicity P/V 0.12%

Van Loyen et al, SPIE Sta Clara (2003) ML5038-3

On-site EUV reflectometer

- Up to 500 mm dia, 30 kg samples
- Reproducibility reflectance 0.5%, wavelength 0.01%

FOM Institute for Plasma Physics Rijnhuizen, The Netherlands

Demounting of a batch of multilayer test samples in one of the nSI UHV deposition systems Maui EUVL Workshop, 14-17 June (photo by N. Steenkamp)

FOM Institute Rijnhuizen

Innovative Technologies

Deposition equipment

Analysis equipment: High resolution, in-vacuum XPS, AES, SEM and STM

www.iof.fraunhofer.de

Multilayer deposition

Sputtering system NESSY-1

Sputtering system Nessy 1

base pressure:

• work pressure:

4 magnetrons

sample size:

- 1* 10⁻⁹ Torr 0.2 - 0.8 m Torr D < 650 mm
 - dif. Barriers
- Thickness uniformity
 Reflectivity uniformity

Thickness gradient

Load / unload system

- 0.2% on 300 mm ±0.3 % (Mo/Si)
- ±50% on 300 mm

Institute for Physics of Microstructures Russian Academy of Sciences

Institute for Physics of Microstructures Innovative Technologies

Multilayer structures (technology; characterization)

Facility providing deposition of 6 different materials in one multilayer structure

Technological stand for deposition of MLSs by means of magnetron and ion-beam sputtering. It allows low energy ion polishing of each layer border and ion-beam

assistant deposition Maui EUVL Workshop, 14-17 June 2011

Reflectometer for reflectivity and transparency characterization of XEUV optics in a spectral range of 0.6 – 20 nm

Mirror fabrication technology

NIKON CORPORATION Precision Equipment Company

Further improvement of MSFR, HSFR ⇒ Lower flare, Higher reflectivity

Nikon's optics fabrication technology can meet EUV HVM requirements.

Rigaku

2010 EUVL Symposium @Kobe, Japan October 18, 2010

Slide 9

RIT in Auburn Hills, Michigan

RIT Facility

18 hole golf course

RIT, Auburn Hills, USA

Innovative Technologies

- Inline Magnetron
- 7 Carousel Magnetrons
- Ion Beam
- Class100 cleanroom with class 10 miniroom
 - Load-locked
 - 5 planar magnetrons
 - 4 process gases
 - 500 x 1500mm carrier
 - 0.2mm accuracy

•Wavelength Range

- $\lambda = 0.2 \text{Å} 300 \text{Å}$
- E = 40eV 60keV • Multilayer Period
- $d_{min} = 10$ Å
- Number of Period
- $N_{max} = 1000$
- Spectral Resolution
- $\Delta\lambda/\lambda = 0.2\%$ (high-selective) 20% (depth-graded)
- Size:
- ~3mm to 1.5 meter

Materials

W/Si, W/C, Ni/Ti, Ni/B₄C, Ni/C, Cr/C, Cr/Sc, Mo/Si, Mo/B₄C, La/B, V/C, Ru/B₄C, Al₂O₃/B₄C, SiC/Si, Si/C, SiC/C, Fe/Si, Cr/B₄C, Si/B₄C, W/Mg₂Si, V/B₄C, Ti/B₄C, etc.

• Design

Uniform or Graded: lateral, radial, bilateral (2D) Depth Graded: supermirror & highselective Flat or Curved Glancing (<1°) to Normal

Innovative Technologies

ML reflectivity metrology

Optics Reflectometry @ 13.5nm

- Gullikson (CXRO) paper in SPIE 4343 (2001). (Dmax~200mm, L~400mm)
 - $\begin{array}{ll} \lambda_{\text{C}} \text{ precision: 0.01\%} & \lambda_{\text{C}} \text{ accuracy: 0.03\%} \\ \text{Rp precision: 0.12\%} & \text{Rp accuracy: 0.50\%} \end{array}$
- **S.Grantham (NIST) (2011).** (Dmax~450mm) median lambda uncertainty: ±0.10% (2σ) of the median

peak reflectivity uncertainty: $\pm 0.25\%$ (2 σ) absolute

- F. Scholze (PTB) paper in SPIE 5751, 749 (2005). (Dmax >660mm) λ_c: 0.0075% week-to-week accuracy; Rp: ±0.1% rms
 reproducibility: λc = ±0.0008nm 1σ or ±0.006% 1σ, Rp = ±0.11% 1σ
- New Subaru (2010). (Dmax~200mm)

λc: 0.004nm, R: 0.05%, fwhm: 0.001nm

- Zeiss (2005). (Dmax~500mm)
- International Intercomparison (2003?)

 λ_{c} : 0.03% agreement b/w CXRO/PTB; 0.029% b/w CXRO/New Subaru Rp: 0.13% agreement b/w CXRO/PTB; 0.05% b/w CXRO/New Subaru

Innovative Technologies

Multilayers for next generation EUVL at 6.7nm

Next generation EUVL

Next Generation EUV and BEUV product roadmap spans >10 years EUVL Under study 0.25 NA 0.32 NA >0.40 NA Lens mirrors 6M 6M 6M 6M 6M 6/8M 6/8M Wavelength 13.5 nm New λ 13.5 nm 13.5 nm 13.5 nm 13.5 nm 13.5 nm Product ADT 3300B 3300C 3500 >3500 3100 3300D Introduction year 2006 2010 2012 2013 2014 2016 >2018 Resolution (hp) 27 nm 22 nm <8 nm 32 nm 18 nm 16 nm 11 nm Sigma OAL flex OAI 0.8 0.2-0.9 flex OAI flex OAI 0.5 Overlay (SMO) 4.5 nm 3.5 nm 3.0 nm 2.5 nm 7.0 nm Throughput (wph) 4 wph 60 wph 125 wph 150 wph 180 wph Dose (mJ/cm²) 5 10 15 15 15 Source (W) з 250 350 500 105

EUV Source Workshop, Dublin, Nov 2010

Maui EUVL Workshop, 14-17 June 2011

Slide 7 | Public

Why 6.X nm: ML reflectivity

Innovative Technologies

Wavelength of maximum reflection

Optical constants and maximum reflectivity

Is today's ML deposition technology ready for HVM?

MLO Supply Readiness – Pre-HVM (NXE3100-3300)

Application	Coatings	Substrates	
Collector Optics	V	V	
Illumination Optics	V	V	
Projection Optics	٧	٧	
Mask Blank	V	V	
Metrology Optics	٧	٧	

Largely internalized supply (with Institutional support & supply) covers small number of tool shipments; scanners, sources, limited scope for metrology tool development

Designs for current and future tools

ZEISS

Solution overview:

Extreme Ultraviolet (EUV) Lithography, edited by Bruno M. La Fontaine, Proc. of SPIE Vol. 7636, 763603 · © 2010 SPIE · CCC code: 0277-786X/10/\$18 · doi: 10.1117/12.848624

MLO Supply Readiness – HVM (NXE3500 and beyond, + New Entrants)

Application	Coatings	Substrates
Collector Optics	√a)	<mark>√</mark> a)
Illumination Optics	<mark>√</mark> b)	<mark>√</mark> b)
Projection Optics	<mark>√</mark> b)	<mark>√</mark> b)
Mask Blank	<mark>√</mark> c)	<mark>√</mark> c)
Metrology Optics	<mark>√</mark> d)	<mark>√</mark> d)

a) What is the required volume in HVM? When needed?

- **b)** There is no published spec for higher NA optics
- c) There are still added coating defects
- d) There is currently no supplier of metrology tools

Conclusion

- MLO technology for 13.5 nm is sufficiently developed to support pre-HVM deployment(s). Deposition of higher NA optics for HVM will require further development.
- For the Next Generation EUVL, the choice of light source fuel and multilayer materials is still in R&D feasibility phase.
- The establishment of multilayer optics infrastructure based on proven low volume manufacturing is, in principal extendable and scalable to HVM.

Acknowledgement

- RIT –G. Fournier, J. Hummel
- FOM A. Yakshin, I. Makhotkin
- CXRO E. Gullikson
- LLNL R. Soufli
- NIST C. Tarrio, S. Grantham, T.B. Lucatorto
- New Subaru T. Harada, T. Watanabe, H. Kinoshita
- IPM N. Salashchenko, N. Chkhalo

Thank you

