High brightness EUV & soft-X-ray MPP discharge source system development

Peter Choi, Sergey V. Zakharov, Raul Aliaga-Rossel, Aldrice Bakouboula, Otman Benali, Philippe Bove, Michèle Cau, Grainne Duffy, Blair Lebert, Keith Powell, Ouassima Sarroukh, Clement Zaepffel, Vasily S. Zakharov,

> NANO-UV sas EPPRA sas

EUV Sources for EUV Lithography

- For HVM 200-500 W of in-band power @ IF with etendue < 3mm²sr
- For mask inspections ABI→AIMS→APMI 10 →100 →1000 W/mm²·sr EUV source for HVM & actinic mask inspection
 COPYRIGHT 2011 NANO-UV a key challenge facing the industry

Nano-UV: Current Product Development

Generic Source Products

- high brightness unit source
- high brightness multiplexed source
- high power multiplexed source

Research Metrology Products

- Nano-patterning Resists Exposure Tool
- Soft X-ray In Vitro Microscope

COPYRIGHT 2011 NANO-UV

EUV Mask Inspection Microscope

- CYCLOPSTM -B

- HYDRATM -B
- HYDRATM -P

- GeNITM

- McXITM
- McEUVITM

i-SoCoMoTM - cell

Physical Dimensions:

- Source
- Instrument rack

: 150 mm diameter, 520 mm length, 7 kg : 1300 x 600 x 800 mm, 200 kg

Utility requirements:

- Electrical
- Cooling

COPYRIGHT 2011 NANO-UV

 \blacktriangleright He, N₂ and Xe

: 200-240V, 2Ø, 50/60 Hz, 16A : Water cooled (2 litres per minute, 15°C - 25°C inlet) : 3 bar inlet

Nano-UV: EUV Source

micro - pulsed plasma

MPP Performance @ 21kV

- with SXUV20 A Mo/Si (350/500 nm) filtered diode from IRD
- 3 nm EUV band (12.4 nm -15.4 nm)
- Al coated (110 nm) on Si_3N_4 (250 nm) to reject OoB
- 200µm pinhole aperture in front of the diode
- typical etendue 1.7 10⁻² mm².sr
- Discharge in He/N₂/Xe admixture, total Flow 3.2 sccm/min
- Cell capacity 1.7nF

Maxpulse

Distanc e source to diode (cm)	Irrandiance @ 1kHz Ph/cm ² /s	Beam HWH M (mm)	Radiation half angle divergence θ (deg)
74	8.2e17	6.13	
98	1.8e17	9.65	0.8
Radiatio	n solid angle =	2*π (1-cc	$(s\theta) = 6e-4 sr$

2011 International Workshop on EUV Lithography June 13-17 Maui, Hawaii, USA

Scanned signal profile @ 74cm

Scanned signal profile @ 98cm

nano

Source Characteristics I-a

- 3kHz repetition rate

Consider:

- Gaussian distribution of the beam (s = 2.8mm, W=5.6mm)
- Radial symmetry
- Discretize profile into rings with size = s/20

Use measured parameters:

- filter Si_3N_4 (100nm) + Al (110nm)
- 2000 TEM grid of 36% transmission
- given diode quantum efficiency 1.1 e⁻/ph
- limiting aperture: 150µm pinhole diameter
- diode signal = 11 nV.s

At 70cm, 21kV, **3kHz**, EUV band 3nm (12.4nm -15.4nm) radiation:

- Peak irradiance \Rightarrow 2.5 E18 ph/cm²/s \Rightarrow 37W/cm²
- power in beam spot $(1/e^2) \implies 16W$

2011 International Workshop on EUV Lithography June 13-17 Maui, Hawaii, USA

Data presented at Kobe October 2010

Source Characteristics I-b - 1kHz repetition rate Measurement parameters

- Average mode over 16 shots:
- Source capacity =1.7nF
- Working pressure= 10mtorr (He:N₂:Xe mixture) with Flow=3.2sccm/min
- Distance between diode and the capillary=74cm
- Diode quantum efficiency @ 13.5nm=1.1e/ph
- Diode filter transmission band= 3nm (12.4-15.4nm)
- Al coated (110 nm) on Si_3N_4 (250 nm) to reject OoB Tin alloy cathode

StripChart during the profile scan acquisition

COPYRIGHT 2011 NANO-UV

Champion Data

Output power and irradiance increase with increasing stored energy

COPYRIGHT 2011 NANO-UV

Source Structure Tuning - different cathode materials

Measured Parameters

SXUV20 A Mo/Si (350/500 nm) filtered diode from IRD, 3 nm EUV band (12.4 nm -15.4 nm), Al coated (110 nm) on Si_3N_4 (250 nm) to reject OoB, typical etendue 1.7 E-2 mm².sr, discharge in He/N₂/Xe admixture with a total Flow 3.2 sccm/min, Cell capacity 1.7nF, Stored energy 440mJ.

2011

USA

Workshop on EUV

Lithography

June 13-17

Sn alloy cathode improves radiation output

Tin addition to the gas admixture - different Tin alloy cathode

2011 International Workshop on EUV Lithography June 13-17 Maui, Hawaii, USA

At high energy, radiation output > 1.25x using Sn alloy 2 compared to Sn alloy 1 Need to assess life time issues

COPYRIGHT 2011 NANO-UV

Progress

Scaling to higher power demonstrated with Sn admixture

nano

Multiplexing - a solution for high power & brightness

- Small size sources, with low enough etendue $E_1 = A_s \Omega << 1 \text{ mm}^2 \text{ sr}$ can be multiplexed.
- The EUV power of multiplexed N sources is

 $P_{EUV} \propto \sqrt{E \cdot N \cdot \Omega} \cdot \tau \cdot f$

 \Rightarrow The EUV source power meeting the etendue requirements increases as $N^{1/2}$

• This allows efficient re-packing of radiators from 1 into N separate smaller volumes without losses in EUV power

Mass Depth (rho*r), g/cm2

• Spatial-temporal multiplexing: The average brightness of a source and output power can be increased by means of spatial-temporal multiplexing with active optics system, totallizing sequentially the EUV outputs from multiple sources in the same beam direction without extension of the etendue or collection solid angle

- compct physical size of SoCoMo ?

HYDRA[™]-ABI - spatial multiplexing for blank inspection

Design Specifications

- 60 W/mm².sr in-band 2% EUV radiant brightness at the IF
- 0.6 W at the IF
- etendue 10⁻² mm².sr
- source area 31 mm² / TBD
- optimized for mask blank inspection
- 4x i-SoCoMo[™] units working at 3 kHz each
- no debris / membrane filter
- close packed pupil fill
- Current Status
 - 4 units integration & characterization
 - single unit optimization
 - ML mirrors evaluation & modelling

25 mm

All 4 sources aligned to a point without use of any solid optical collector

HYDRA4-ABITM

- spatial multiplexing

COPYRIGHT 2011 NANO-UV

- 4 cells operating @ 1 KHz @ 22 KV
- Cells capacity : 1.2nF each
- Operating Pressure ; 30mTorr

Profile scans (3nm EUV band) @ 70 cm perpendicular to the optical beam

HYDRATM - 12P High Power Configuration - prototype system

A multiplexed EUV Source optimized for High power Viewing into the 12 Units operating @ 1KHz

- System integration successful
- Beam alignment needs automation
- Crosstalk between cells
- Power adding achieved
- Optical steering in preparation

HYDRA[™]-APMI - unique temporal & spatial multiplexing

Design Specifications

- 1200 W/mm².sr in-band EUV radiant brightness
- 2.4 W at the IF
- etendue 2. 10⁻³ mm².sr
- source area 20 mm²
- optimized for patterned mask inspection
- 8x i-SoCoMo[™] units working at 3 kHz each
- 24 kHz temporally multiplexed
- no debris / membrane filter
- Gaussian output spot
- Current Status

COPYRIGHT 2011 NANO-UV

- optics design & modelling
- single unit optimization
- mechanical design

COPYRIGHT 2011 NANO-UV

on EUV Lithography June 13-17 Maui, Hawaii, USA

2011

GeNITM II- Product Design

Features:

- •20 nm printing
- •150 mm, 200 mm & 300 mm wafer size
- •Scan rate : 2h/wafer
- •Load lock handling system
- •Small footprint system
- •Easy system integration
- Low cost of ownership
- •High quality system adaptable to user needs
- •High reliability
- •Minimized downtime
- •Process reproducibility

Upgradeable Features:

•300 mm Dual FOUP Wafer Handling System
•Integrated wafer staging
•Sub 20 nm printing

Soft X-ray Microscopy deep penetration & high contrast

Penetration distances in water and protein for electrons and X-rays

Soft X-ray microscopes and their biological applications Janos Kirz, Chris Jacobsen & Malcolm Howells - Q. Rev. Biophys. 28, 33{130 (1995)

Table-top water window transmission x-ray microscopy: Review of the key issues, and conceptual design of an instrument for biology. Jean-François Adam and Jean-Pierre Moya , Jean Susini

- Rev. Sci. Instrum. 76, 091301 2005

2011 International Workshop on EUV Lithography June 13-17 Maui, Hawaii, USA

COPYRIGHT 2011 NANO-UV

McXITM - for Soft X-ray Microscopy

- Hydrated Structure Radiographic Imaging
- 20 nm resolution over Large Inspection Field (25µm x25µm)
- Real time Inspection
- In Vitro / In Vivo
- Local Environment Sample Cell
- Chemical Element Sensitive Imaging
- Hyper-Spectral Image Map
- Variable Magnification to x 20 000
- Short Set-up time
- Compact Footprint

$McXI^{TM}$ II – Product Design

132 mm

COPYRIGHT 2011 NANO-UV

Features:

- •Operating wavelength : 2.2-4.4 nm
- •Resolution : < 30 nm
- •Imaging system
- : X-ray/Optical/Digital
- Short acquisition time
- •Load lock sample handling system
- •No sample preparation

Benefits:

- •Small footprint through compact design
- •Easy system integration
- •Easy portability
- •Automated system
- •High quality system adaptable to user needs
- •Robust and maintenance free X-ray source

Wavelength Selecting Aperture

Condensor Zone Plate Magnification

Source Exit Aperture

Soft X-ray Source

SX Stage : x 25 - x 50 (λ dependent) Optical Stage : x 4 - x 20 (selectable) Digital Stage : x 10 - x 20 (selectable)

71/11

-1

2011 International Workshop on EUV Lithography June 13-17 Jaui, Hawaii, USA

- Microscope X-ray In Vivo

nano

COPYRIGHT 2011 NANO-UV

Summary

- Time resolved measurements show substantial power/ irradiance increase achievable in GEN II cell EUV band
- (12.4nm-15.4nm) power deliverable to a spot of under 1 cm diameter ~ 20W averaged at 1 kHz, with 0.5J stored energy per pulse
- Extrapolation suggests higher operating voltage and frequency can deliver 3 W in 2% band around 13.5 nm
- etendue increases with increasing energy stored and EUV output but remains < 10⁻² mm².sr at the maximum parameters tested
- True divergence of the radiation is low from space resolved near field measurements
- zone plate based actinic EUV microscope can be constructed using a CYCLOPS[™] source to provide a stand-alone instrument
- multiplexed HYDRA[™]-P source structure can supply a cost effective, scalable light source with requisite power for HVM scanner deployment

Acknowledgements

- Collaborators
 - Pontificia Universidad Catolica de Chile
 - NRC Kurchatov Institute, Moscow, Russia
 - Keldysh Institute of Applied Mathematics RAS, Moscow, Russia
 - University College Dublin
 - King's College London

Sponsors - EU & French Government

- FP7 IAPP
- OSEO-ANVAR
- Investor RAKIA

EUV LITHO, Inc

COPYRIGHT 2011 NANO-UV

Government of Ras Al Khaimah RAK Investment Authority

 \circ

