

1st/2nd generation Laser-Produced Plasma source system for HVM EUV lithography

- Hakaru Mizoguchi*1, Tamotsu Abe, Yukio Watanabe, Takanobu Ishihara, Takeshi Ohta,Tsukasa Hori, Tatsuya Yanagida, Hitoshi Nagano, Takayuki Yabu, Shinji Nagai, Georg Soumagne, Akihiko Kurosu, Krzysztof M. Nowak, Takashi Suganuma, Masato Moriya, Kouji Kakizaki, Akira Sumitani, Hidenobu Kameda*1, Hiroaki Nakarai*1, Junichi fujimoto
- *1 Gigaphoton Ltd. :400 Yokokura shinden,Oyama, Tochigi,Japan Komatsu Ltd. : 3-25-1 Shinomiya, Hiratsuka, Japan

KOMATSU == EUVA

Outline

1. Introduction

2. Engineering Test source

- 1st Generation (ETS) device: System experiment
 - Operation Data

• 10Hz device: Critical issue experiment

- Vaporization experiment
- Ionization experiment
- Magnetic mitigation
- Pre-pulse and high CE

3. HVM EUV light source

- Product roadmap
- 2nd Generation device: Development status
 - Configuration
 - Latest status
- 4. Summary

Outline

1. Introduction

2. Engineering Test source

- 1st Generation (ETS) device: System experiment
 - Operation Data
- 10Hz device: Critical issue experiment
 - Vaporization experiment
 - Ionization experiment
 - Magnetic mitigation
 - Pre-pulse and high CE

3. HVM EUV light source

- Product roadmap
- 2nd Generation device: Development status
 - Configuration
 - Latest status
- 4. Summary

EUV sources キャピラリー 集光ミラー Plasma guiding Sn supply Magnet 真空容器。 High power パルス pulsed CO., laser 電源 -Plasma LPP: CO₂ laser and Sn source æ EUV 放電 ✓ High power pulsed CO₂ laser CO2 laser Magnetic field plasma mitigation \checkmark 放電 ラズマ ✓ Pre-Pulse plasma technology 中間集光点:IF **EUV Collector** デブリシールド So-collector 真空ポンプ

Туре	LPP		DPP
Maker	Gigaphoton	Company A	Company B
Size	Large	Very Large	Small
Power (at present)	104W/21W	90W/20W	34W/34W
Plasma	No electrode	No electrode	Disc electrode
Mitigation	Pre pulse + Magnet	Gas	Gas+mechanical shutter
Life limitation	(several 1000 hr)	Several 10 hr	Several 10 hr
Bottle neck	-	Mirror	Electrode/Mirror
Remark	 Theoretically no limit Engineering works still to be done 	Trade off of power and lifetime	 Trade off of power and lifetime Trade off of power and beam quality

Copyright 2011 GIGAPHOTON INC. all rights reserved.

GIGAPHOTON

Outline

1. Introduction

2. Engineering Test source

- 1st Generation (ETS) device: System experiment
 - Operation Data
- 10Hz device: Critical issue experiment
 - Vaporization experiment
 - Ionization experiment
 - Magnetic mitigation
 - Pre-pulse and high CE

3. HVM EUV light source

- Product roadmap
- 2nd Generation device: Development status
 - Configuration
 - Latest status
- 4. Summary

ETS system configuration

System layout

Copyright 2011 GIGAPHOTON INC. all rights reserved.

EUV Lithography Workshop 2011 P6

ΞUVΛ

System operation Data (ETS device)

	SPIE 2010 (Feb.2010)	EUV Symposium (Oct.2010)	Latest Data (Feb,2011)
EUV power (@ I/F)	69 W	104 W	42 W
EUV power (clean @ I/F)	33 W	50 W	20 W
Duty cycle	20 %	20 %	5%
Max. non stop op. time	>1 hr	<1 hr	>7 hr
Average CE	2.3 %	2.5 %	2.1%
Dose stability :simulation	(+/- 0.15%)		-
Droplet diameter	60 μ m	60 μ m	30 μm
CO ₂ laser power	5.6 kW	7.9 kW	3.6kW

GIGAPHOTON

ΞUVΛ

Droplet generator lifetime improvement (\phi30 \mum)

> Operation time improved from <1 hour to >7 hours

GIGAPHOTON

ΞUVΛ

Copyright 2011 GIGAPHOTON INC. all rights reserved.

System operation result on ETS

>Long time system operation demonstrated

GIGAPHOTON

 > Operation duration:
 > Droplet
 > Full repetition rate:
 > In burst clean power:
 20W (average) 25W (max)

Conclusion of ETS device experiment

"ETS experiment clarified 3 key challenges are essential"

Copyright 2011 GIGAPHOTON INC. all rights reserved.

GIGAPHOTON

Outline

1. Introduction

2. Engineering Test source

- 1st Generation (ETS) device: System experiment
 - Operation Data

• 10Hz device: Critical issue experiment

- Vaporization experiment
- Ionization experiment
- Magnetic mitigation
- Pre-pulse and high CE

3. HVM EUV light source

- Product roadmap
- 2nd Generation device: Development status
 - Configuration
 - Latest status
- 4. Summary

Collector mirror protect Concept

All Sn atoms should be ionized.

GIGAPHOTON

- 1 Magnet field is effective for guiding ions not to going to mirror
- **②** All Sn fragments and atoms are needed to be ionized

Critical issue investigation with 10Hz device

- Double pulse optimization
- Debris mitigation mechanism
- Higher CE investigation

GIGAPHOTON

Setup configurations

GIGAPHOTON

Droplet transformation by pre-pulse

Smaller fragments Spread homogeneously

GIGAPHOTON

ΞUVΛ

Copyright 2011 GIGAPHOTON INC. all rights reserved.

Droplet shooting scheme

Proper pre-pulse condition

GIGAPHOTON

Copyright 2011 GIGAPHOTON INC. all rights reserved.

Laser induced fluorescence (LIF) imaging for tin atom

Advantages

- Spectrally selective pumping and observation
- High sensitivity
- Cross sectional imaging with a sheet laser beam

Grotrian diagram for tin atom

GIGAPHOTON

Principle of LIF

ΞUVΛ

Copyright 2011 GIGAPHOTON INC. all rights reserved.

Atom measurement by LIF - 2

GIGAPHOTON

Remaining atoms was estimated by subtracting w/ CO2 vs w/o CO2 measurement

EUV Lithography Workshop 2011 P18

Conclusion of 10Hz device experiment

"Even with smaller than $20\mu m$ droplet,

GIGAPHOTON

Ce=3.3% and perfect vaporization is simultaneously achieved"

Outline

1. Introduction

2. Engineering Test source

- 1st Generation (ETS) device: System experiment
 - Operation Data
- 10Hz device: Critical issue experiment
 - Vaporization experiment
 - Ionization experiment
 - Magnetic mitigation
 - Pre-pulse and high CE

3. HVM EUV light source

- Product roadmap
- 2nd Generation device: Development status
 - Configuration
 - Latest status
- 4. Summary

EUV product roadmap

★ 1st source delivery > GL200E will be delivered to scanner manufacture at Mid Y2011.
KOMATSU

Clean power roadmap

EUV model		ETS	GL200E	GL200E+	GL400E
Drive laser power	kW	10	23	33	40
Conversion efficiency	%	3.0	5.0	5.0	6.0
C1 mirror collector angle	sr	5.5	5.5	5.5	5.5
efficiency*	%	74	74	74	74
C1 mirror reflectivity	%	(50)	57	57	57
Optical transmission	%	95	95	95	95
SPF (IR, DUV)	%	N/A**	62	62	62
Total EUV power (after SF	W	100	250	350	500

* Against hemisphere (Calculation base) ** w/o SPF

Copyright 2011 GIGAPHOTON INC. all rights reserved.

GL200E proto constructed at Hiratsuka facility

Copyright 2011 GIGAPHOTON INC. all rights reserved.

Main Amplifier performance

> Main amplifier characteristics : experimental results

- ✓ ~10kW output achieved at 3kW input power
- ✓ Good beam quality: M²<2.0

GIGAPHOTON

Pointing stability of CO2 laser w/ control, duty cycle 30%

GIGAPHOTON

Beam profile

Operation conditions	
Rep. rate [kHz]	100
Duty [%]	30
ON pls [pulse]	30,000
OFF time [msec]	700
Testing time [min]	120

Pointing stability of Pre-Pulse laser

GIGAPHOTON

w/ control, duty cycle 30%

Beam profile

Operation conditions	
Rep. rate [kHz]	100
Duty cycle [%]	30
ON pls [pulse]	30,000
OFF time [msec]	700
Testing time [min]	120

Copyright 2011 GIGAPHOTON INC. all rights reserved.

Droplet Generator for GL200E

Video

κομητου

GIGAPHOTON

 $20 \,\mu$ m, 10kHz

Slow image @nozzle

Position stability at 10 kHz

ltem	unit	target	result
position stability x	um	+/-20	7
position stability z	um	+/-20	18

- > Position stability is within specification for proto.
- > Droplet generator on proto is working within spec.

GIGAPHOTON

Scalability toward to 250W clean power

- 3.3% CE realized by 20 μm droplet

GIGAPHOTON

- It indicates ~100W clean power if operated at 100kHz*

KO

Research and development scenery

Presentation on 02 March @SPIE 2011 1

κομητίς

GIGAPHOTON

Copyright 2011 GIGAPHOTON INC. all rights reserved

We delayed 3 months. Now recovering !

Real first EUV light ... High power and debris free light will come within a few weeks !

Outline

1. Introduction

2. Engineering Test source

- 1st Generation (ETS) device: System experiment
 - Operation Data
- 10Hz device: Critical issue experiment
 - Vaporization experiment
 - Ionization experiment
 - Magnetic mitigation
 - Pre-pulse and high CE

3. HVM EUV light source

- Product roadmap
- 2nd Generation device: Development status
 - Configuration
 - Latest status

4. Summary

KOMATSU

Summary

1st generation integrated setup LPP source (ETS) and 10 Hz device:

- One order smaller fragment (droplet size reduction from 60µm to 30 µm) extends operation time to 7 hours under 20W(clean power @I/F, 5%duty) level operation.
- 10Hz experiment proved debris mitigation concept experimentally. That is; proper pre-inonization and main ionization make >93% ionization. This technology enables clean light source with combination with magnetic field.
- 10Hz experiment clarify CE (Conversion Efficiency) improvement, with <20µm droplet we found the region where Ce >3.3% and perfect vaporization are simultaneously possible.

2st generation LPP source (GL200E):

- Concept of design and outline is reported.
- We already finished assembling and final engineering of components. The first light will be realized within a few weeks.

Acknowledgments

Thanks to fund

This work was partly supported by the New Energy and Industrial Technology Development Organization NEDO Japan, and Komatsu Ltd.

Copyright 2011 GIGAPHOTON INC. all rights reserved.

