Rare-Earth Plasma EUV Source at 6.7 nm for Future Lithography

Takeshi Higashiguchi^{1,2}

Takamitsu Otsuka¹, Noboru Yugami^{1,2}, Deirdre Kilbane³, Thomas Cummins³, Colm O'Gorman³, Tony Donnelly³, Padraig Dunne³, Gerry O'Sullivan³, Weihua Jiang⁴, and Akira Endo⁵

¹Utsunomiya University ²Japan Science and Technology Agency ³University College Dublin ⁴Nagaoka University of Technology ⁵Waseda University

2011 International Workshop on EUV Lithography Makena Beach Golf Resort , Maui, Hawaii, USA Wednesday, June15, 2011

Why 6.X nm EUV source? Beyond EUV (BEUV) source

From ASML presentation shows as follows:

- (1) extensive (beyond 8 nm@~2017)
- (2) 6.X nm choice: Best transmission & Easier Manufacturing
- (3) Source: New fuel is needed
- (4) $R \sim 80\%$ (cal), $R \sim 40\%$ (exp)@La/B₄C MLM
- (5) Total throughput for 6.7 nm & 13.5 nm is comparable!!!

Why 6.X nm EUV source? Beyond EUV (BEUV) source

G. Tallents et al., NATURE PHOTONICS, 4, 809 (2010).

What's new for high power and high CE

Laser color dependence
Resonant line appearance in low-density plasma
Enhancement condition of the 6.7-nm emission

Introduction... from previous spectral reports

S. S. Churilov *et al.*, Phys. Scr. **80**, 045303 (2009).

Previous & recent observations We observed continuum due to satellite lines

G. O'Sullivan & P. K. Carroll, JOSA **71**, 227 (1981). T. Otsuka *et al.*, APL **97**, 111503 (2010).

We demonstrate the efficient BEUV source

at 6.7 nm by rare-earth (Gd) LPP and DPP.

Ionic population of Gd ions We should produce 50-200 eV plasma.

gf spectra of Gd ions We confirm the UTA resonant lines around 6.7 nm

Experimental setup

Spectra from Gd & Tb plasmas

Laser wavelength dependence

- Laser energy: 320 mJ
- Laser intensity: 1.6 x 10¹² W/cm²

Laser wavelength dependence

- Laser energy: 320 mJ
- Laser intensity: 1.6 x 10¹² W/cm²

Dual laser pulse irradiation

Trade off 1 Effective ions vs self-absorption

Electron (ion) density decreases, but absorption length increases.

For large opacity material (high-Z), such as Xe & Sn

Electron density decreased: absorption effect decreased Density gradient increased: absorption effect increased

For small opacity material (low-*Z*), such as Li & low initial density target

Electron density decreased: absorption effect more decreased Density gradient increased: large volume effect increased

Physical summary for high-Z plasmas from 13.5-nm Sn plasmas

Low density plasmas for reducing self-absorption effects

Suppression of satellite emission & higher spectral purity

Long wavelength (low critical density): CO₂ laser@10¹⁹ /cc Short laser pulse duration: ~1-2 ns@YAG laser (1064 nm) Low density targets

Discharge plasmas (low density plasmas)

Effective dual pulse scheme

We require the use of:

low initial density target & DPP

or

longer laser wavelength laser

in the **self-absorption effect suppression** point of view.

Discharge experiments To reduce the satellite lines for low density plasma

Discharge experiments To reduce the satellite lines for low density plasma

Low density plasma by DPP

Low density plasma by use of low-initial density targets

EUV CEs by use of low-initial density targets

Enhancement of EUV CE by use of dual laser pulse technique

Question, problem, and definition...

 \blacksquare CO₂ laser-produced plasma behavior?

High temperature (30-50 eV to 50-150 eV): high energy particle generation

■ CE bandwidth (2% to less than 0.1%?)

Regenerative target supply method (melting point: 1313 °C)

We have demonstrated the efficient EUV source around 6.7 nm using Gd & Tb (rare-earth).

- Spectral behavior at different laser wavelength
- Low density target to *suppress the self-absorption* in plasma
- Conversion efficiency: ~ 1.8% before optimizing parameters
- Question, problem, and definition