Optimization of laser-produced plasma light sources for EUV lithography

M. S. Tillack and Y. Tao¹

University of California, San Diego Center for Energy Research

¹ Currently at Cymer Inc.

2011 International Workshop on EUV Lithography 13-17 June 2011 Maui, HI

Introduction

- Our recent research explores both HVM and actinic metrology issues
- We perform university-scale single-shot experiments, focused on fundamental understanding of laser-produced plasmas
- Comprehensive diagnostics
- CO_2 laser-produced plasma
 - 1) Confinement effects
 - 2) Non-isothermal expansion
 - 3) Charged particle emissions
- Nd:YAG laser-produced plasma
 o Long-pulse (>10 ns) studies

Facilities for EUV source studies at UCSD

Lasers: 4 Nd: YAG and 3 CO_2 Nd: YAG: Pulse duration: 0.1 ~ 40 ns Intensity: up to 10^{14} W/cm² Sync. jitter: < 0.5 ns

 $\begin{array}{l} \text{CO}_2: \text{Pulse duration: } 10 \sim 200 \text{ ns} \\ \text{Intensity: up to } 8 \times 10^{10} \text{ W/cm}^2 \\ \text{Sync. jitter: } < 5 \text{ ns} \end{array}$

Targets: Aqueous droplet: $\sim 30 \ \mu m$ Sn droplet: $>50 \ \mu m$ Sn sphere: 30-250 $\ \mu m$ Sn coatings: 10 nm $\sim 100 \ nm$ DiagnosticsSoft x-ray emission:Energy monitor
TGS spectrometer
In-band soft x-ray waveformIons:Electrostatic Energy Analyzer
space & time resolved visible spectroscopy
Faraday cupsPlasma:Green and IR interferometers
In-band soft x-ray imaging
Fast (2 ns) visible imaging

Confinement by a crater results in higher CE in a CO₂ LPP

- 1 µm wavelength is too short; opacity is too high.
- 10.6 µm wavelength is too long; plasma density is sub-optimal.

Crater (100 accumulated pre-pulses)

page 5 of 17

Larger corona and emitting volume enhance CE

Laser pre-pulses can create well-formed craters

- Black images are experimental shadowgraphs
- Red grids represent 2-D hydrodynamic simulation using h2d.
- The expansion at later times results in a disk-like shape.
- A crater may also appear in smaller droplets under proper conditions. The time scale will change.

S. Yuspeh, Y. Ueno, M. S. Tillack, R. Burdt, Y. Tao, and F. Najmabadi, "Cavity formation in a liquid Sn droplet driven by laser ablation pressure for an extreme ultraviolet light source target," *J. Applied Physics* **109**, 076102 (2011).

Non-isothermal expansion occurs with $CO_2 LPP$

Plasma electron density $n_{e} \propto \exp[-x/l_{s}]$

Scale length

 $l_s = c_s t$

Ion sound speed

$$c_s = \sqrt{(ZT_e / M_i)}$$

Assumptions: $T_e=30 \text{ eV}$, Z=10

Y. Tao, M. S. Tillack, S. Yuseph, R. Burdt, and F. Najmabadi, "Non-classical hydrodynamic behavior of Sn plasma irradiated with a long CO₂ laser pulse," *Applied Physics B 99 (2010) 397-400*.

The coronal density profile collapses after ~30 ns

laser

The emitting region moves very slowly

- Ablation is limited, implying a small flux limiter @10 µm
- Poor conductivity between n_c and ablation surface

Ion energy spectra vs. charge state were measured for both CO_2 and Nd:YAG LPP

Higher charge state and longer critical length are observed in CO_2 laser-produced Sn plasma

Goals for actinic metrology and mask inspection

High average brightness to obtain higher resolution

- Small EUV source, 10-30 µm
- Stable and stationary emitting region
- Nd:YAG laser appears better suited to these very small plasmas

Lower peak intensity to avoid mask damage under high EUV flux

- Long duration (> 10 ns) laser pulse may be better than short pulse
- The longer the pulse duration the better
- However, the following issues have to addressed in order to apply long duration laser pulse to an EUV source,

1. Is high CE possible with longer pulses? – Opacity

- 2. Is it possible to obtain small source size? Plasma expansion
- 3. What are ion energies with a longer pulse?

Efficient and small in-band EUV source driven with long pulse Nd:YAG laser

The pulse length was varied by manipulating the oscillator voltage and the Q-switch delay on our QuantaRay laser

Even longer pulses are possible, but require laser modifications

The EUV source size depends more strongly on intensity than pulse length

Sn plasma driven by a long laser pulse produces much slower ions compared with shorter pulses

Kinetic energy of Sn ions driven by 0.13, 7 and 30 ns pulses

Our earlier pre-pulse results showed the importance of a "gentle" density gradient

Ions & neutral particles

EUV

emission

Acknowledgements

This work has been supported by

KLA-Tencor,

the UC Discovery Grant program, and

Cymer Inc.

