NewLambda Technologies

Recent Progress on High-Brightness Source Collector Module for EUV Mask Metrology

Padraig Dunne, Kenneth Fahy, Paul Sheridan, Niall Kennedy and Fergal O'Reilly

Dublin, Ireland

NewLambda Technologies

- Spin out from UCD School of Physics, Ireland
- Developing VUV, EUV and Soft X-ray sources
- Applications
 - Metrology
 - Table-top tuneable beamline
 - Microscopy

Metrology Source Considerations

Tool Requirements*					
Metrology Tool	Etendue	Brightness			
AIMS	5x10 ⁻⁴ mm ² sr	30-100 W/mm ² sr			
Mask Blank	4x10 ⁻³ mm ² sr	> 80 W/mm ² sr			
Patterned Mask	1.5x10 ⁻² mm ² sr	>40 W/mm ² sr			

Choices for etendue matching:

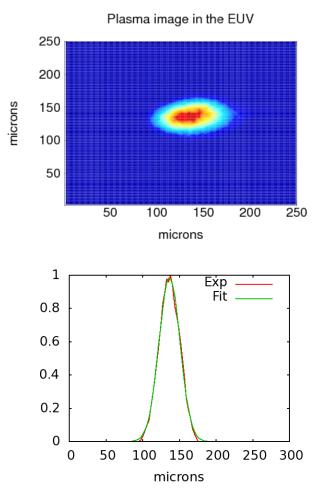
- Demagnify large source photon loss for fixed etendue
- Magnify small source higher photon collection
 higher brightness for given input power

EUV source IF

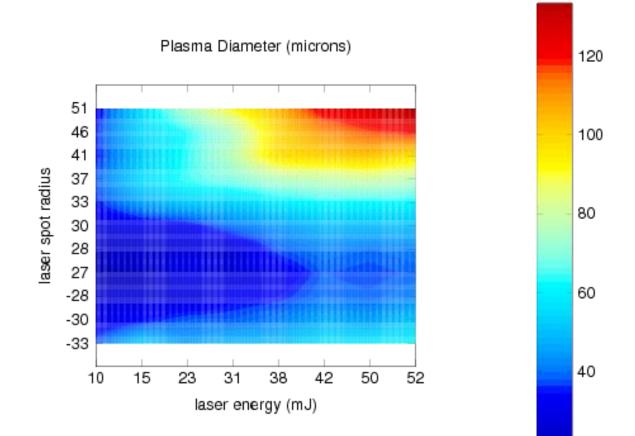
Magnifying ellipsoid (x8) Placed < 20 mm from EUV Source Etendue ≥ 10⁻⁴ mm²sr High Brightness

Mask Metrology SoCoMo Status

Parameter	Industry Target Value*			
rarameter	AIMS	Blank	Pattern	
Brightness (W/mm ² sr)	30-100	>80	>40	
Etendue (mm²sr)	5e-4	4e-3	1.5e-2	
Position Stability (of FWHM)	3%	3%	3%	
Size Stability	3%	3%	3%	
Energy Stability	<3%	<3%	<3%-	
Homogeneity	<5%	<5%	<5%	
Operating time	100	100	100	

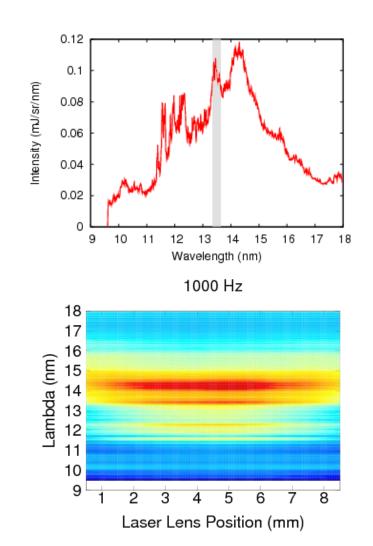

* EUVL Symposium, 2011

NLT Source


- LPP (Nd:YAG 125W, 25 mJ per pulse, 5 kHz)
- Proprietary liquid metal mixture as target
- Current status:
 - >200 hours total operation (since Nov. 2011)
 - Brightness = 80 W/mm²sr
 - (Brightness calculated using the Carl Zeiss method)
 - 24 hours continuous
 - Self-healing collector
 - Roadmap to >500 W/mm²sr, 100 hours continuous

Source Imaging

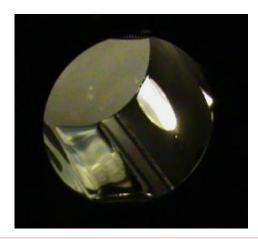
- Imaged using multilayer concave mirror
- 10 shots per frame
- 34 x 55 micron spot measured
- Gaussian fit



Source Imaging

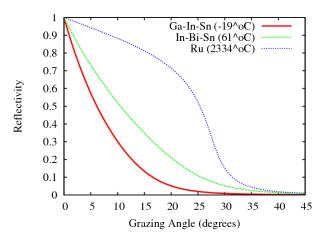
Source Spectra

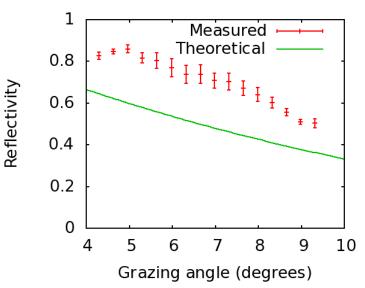
- Nd:YAG, 17 mJ per pulse, 1 kHz
- Viewed at 45°
- CE > 1% measured



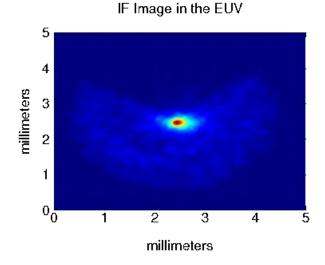
Stability - Source Position

Imaged with 50 μ m pinhole

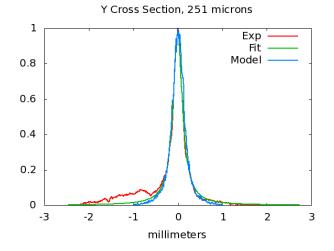

The Liquid Metal Collector

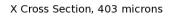


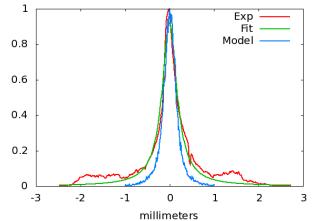
Collector design example: Tin-based coating Ellipsoid Shape Length = 100 mm

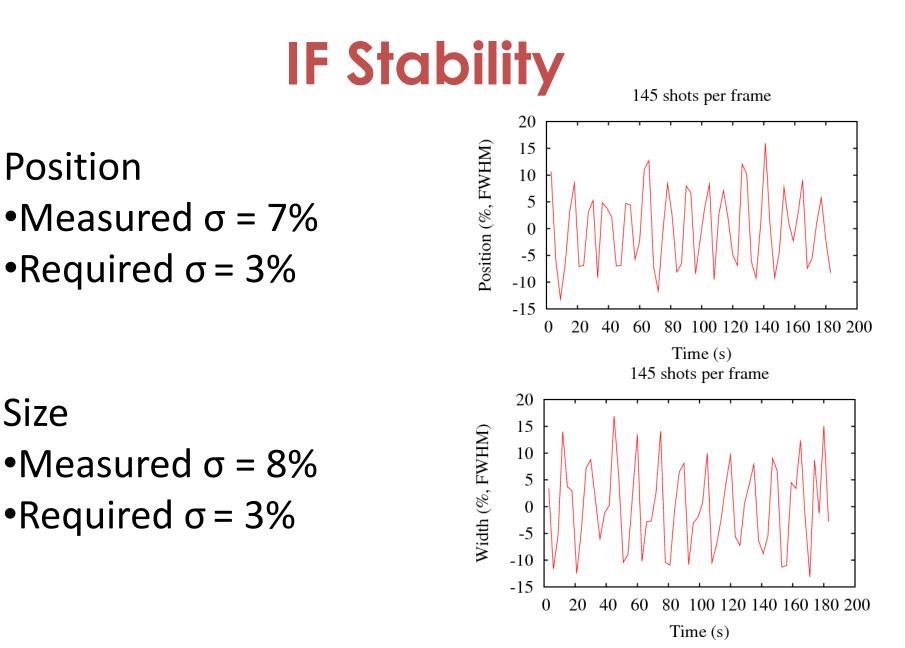

Large Diameter = 40 mm Predicted Collection ~ 3%

Optimising: Collection efficiency IF brightness






Intermediate Focus Imaging



- Single Shot Imaging
- Lorentzian fit
- IF spot size 250 x 400 microns

Size

NLT SoCoMo

- High Brightness LPP
- Clean IF
- Stand Alone Unit
- 1 m x 1 m x 1.2 m
- Multiple parameter monitoring

Mask Metrology SoCoMo Status

Parameter	Industry Target Value			NewLambda
	AIMS	Blank	Pattern	Current Prototype
Brightness (W/mm²sr)	30-100	>80	>40	80
Etendue (mm²sr)	5e-4	4e-3	1.5e-2	5e-4
Positional Stability	3%	3%	3%	7%
Size Stability	3%	3%	3%	8%
Energy Stability	<3%	<3%	<3%-	9%
Homogeneity	<5%	<5%	<5%	7.5%
Operating time	100	100	100	>200 total 24 continuous

Future Plans

- Upgrade Laser to 300 W
- Improve source stability
- Optimising Liquid Metal recipe, (CE & Reflectivity)
- Extend Lifetime operation

Acknowledgements

European Union European Regional Development Fund

We would like to acknowledge the kind support of Regina Soufli, Lawrence Livermore National Laboratory, also Larissa Juschkin, RWTH Aachen, EUVLitho and the technical workshop at the UCD School of Physics

Thank you for listening