Persistent Efforts to Overcome the Challenge of EUVL

Soichi Inoue EUVL Infrastructure Development Center, Inc.

Agenda

- Trend of LSI Downscaling
- Lithography Prospect
- Technical Challenge for EUVL
- Role of EIDEC
- Persistent Efforts for Each Technology Development
 - Mask
 - Resist / Process
 - Source / Scanner
- Summary

More Moore !

Trend of Downscaling

<u>How About Is Millennial Roadmap ?</u>

MICROELECTRONIC ENGINEERING

Microelectronic Engineering 41/42 (1998) 41-46

Microlithography in midlife crisis

Christopher P. Ausschnitt IBM Advanced Semiconductor Technology Center Hopewell Junction, New York

Minimum dimension (microns)

Dimension ~ 1mm

Lithography Prospect

Scenario of EUV Insertion

Agenda

- Trend of LSI Downscaling
- Lithography Prospect
- Technical Challenge for EUVL
- Role of EIDEC
- Persistent Efforts for Each Technology Development
 - Mask
 - Resist / Process
 - Source / Scanner
- Summary

Technical Challenge for EUVL

Agenda

- Trend of LSI Downscaling
- Lithography Prospect
- Technical Challenge for EUVL
- Role of EIDEC
- Persistent Efforts for Each Technology Development
 - Mask
 - Resist / Process
 - Source / Scanner
- Summary

EIDEC Outlook

Agenda

- Trend of LSI Downscaling
- Lithography Prospect
- Technical Challenge for EUVL
- Role of EIDEC
- Persistent Efforts for Each Technology Development
 Mask
 - > Resist / Process
 - Source / Scanner
- Summary

Status of Mask Infrastructure

EIDEC

Defect Repair Tool

Challenges for "Effective" Phase Defect-free Blank

Dark Field Actinic Blank Inspector (ABI)

Progress of Actinic Blank Inspector (ABI)

Current Status of Phase Defect

2-2. LTEM-ML blank defect trend @50nm SiO2

This is the updated defect trend of the LTEM-ML blank (LTEM substrate flatness <150nm). "NEW CHAMPION" defect density is 0.12/cm2 (21defects/plate) at 50nm SiO2 w/M7360. The defect density at yield XX% has also been continuously decreased.

EUVL Workshop 2012, June 4, 2012

Requirement: Defect Hiding Process

 \checkmark It takes a long time to achieve perfect blanks (no phase defect) with high yield.

 Industry requires to identify precise location of phase defects to mitigate them by shifting patterns and hiding them.

New Feature: Defect Review Mode

 Review optics enables to demagnify the corresponding pixel size of image sensor on wafer and to identify the position of phase defect with higher accuracy.

EUVL Workshop 2012, June 4, 2012

Losert

Patterned Mask Inspector (PMI) with EB Projection Optics

Signal-to-Noise Ratio of Defect

The 24 nm-sized edge extension defect was successfully identified

Agenda

- Trend of LSI Downscaling
- Lithography Prospect
- Technical Challenge for EUVL
- Role of EIDEC
- Persistent Efforts for Each Technology Development
 - Mask
 - Resist / Process
 - Source / Scanner
- Summary

Metric & Infrastructure for Resist Development

Small Field Exposure Tool: SFET

Items	Spec
NA	0.3
Field size: mm	0.2 x 0.6
Magnification	1/5
Source power	0.5W @IF

Ultimate Resolution (Aggressive Dipole Illum.)

16nm L/S was resolved.

Exposure		
ΤοοΙ	: Canon SFET	
NA	:0.3	
Illumination : X-dipole		
Track	:TEL ACT12	
Evaluation		
SEM	:Hitachi CG4000	
Resist	: 35nm Thickness	

Proc. of SPIE Vol. 7696 79690Q-6

N. Sugie, et al., presented at The 21st Research Group on Polymers for Microelectronics and Photonics, No.1 (2012).

Outgas Evaluation Procedure

✓ Outgassing from resist material generates contamination film on WS.

 \checkmark The outgas amount for cleanable (carbon) components is quantified by measuring the thickness of the contamination film.

 \checkmark Non-cleanable components can be characterized by XPS after cleaning the carbon contaminant by H₂ radical.

Outgas Evaluation Infrastructure in EIDEC

FINE

✓ EB-based Outgas Evaluation Tool has been installed in Mar. 2012.

✓ EUV-based Tool also has been installed as a reference of EB-based tool.

✓ The metrology tools, i.e. Spectroscopic Ellipsometer (SE) and XPS, was certificated by exposure tool supplier.

Carbon Contamination

- ✓ Linear correlation for carbon contamination between EUV and EB was clearly observed.
- ✓ The carbon contamination was decreasing with increase in degree of polarity of the de-protected groups and polymer platforms. <u>Polarity control</u> is one of the key design parameters to reduce outgassing.

EIDEC

Contamination at Unexposed Area after Cleaning

<u>Fluorine</u> was detected by XPS only at unexposed area of EUV sample.
 TOF-SIMS indicated it was <u>PAG anion compounds</u> outgassed from resist.

EIDEC

EUVL Workshop 2012, June 4, 2012

Agenda

- Trend of LSI Downscaling
- Lithography Prospect
- Technical Challenge for EUVL
- Role of EIDEC
- Persistent Efforts for Each Technology Development
 - Mask
 - Resist / Process
 - Source / Scanner
- Summary

EUV Focus Areas 2006-2010: 22 nm half-pitch insertion target

2007 / 22hp	2008 / 22hp	2009 / 22hp	2010 / 22hp	2011 / 22hp
1. Reliable high power source & collector module	1. Long-term source operation with 100 W at IF and 5MJ/day	1. Mask yield & defect inspection/review infrastructure	1. Mask yield & defect inspection/review infrastructure	1. Long-term reliable source operation with 200 W at IF*
2. Resist resolution, sensitivity & LER met simultaneously	2. Defect free masks through lifecycle & inspection/review infrastructure	2. Long-term reliable source operation with 200 W at IF	1. Long-term reliable source operation with 200 W at IF	2. Mask yield & defect inspection/review infrastructure
3. Availability of defect free mask	3. Resist resolution, sensitivity & LER met simultaneously	3. Resist resolution, sensitivity & LER met simultaneously	2. Resist resolution, sensitivity & LER met simultaneously	3. Resist resolution, sensitivity & LER met simultaneously
4. Reticle protection during storage, handling and use	 Reticle protection during storage, handling and use 	 EUVL manufacturing integration 	 EUVL manufacturing integration 	EUVL manufacturing integration
5. Projection and illuminator optics quality & lifetime	 Projection / illuminator optics and mask lifetime 			

*) This requires a 20 X improvement from current source power status

HVM introduction in late 2013 if productivity challenge can be met

30 October 2011

2011 EUVL Symposium

EUV Light Source

Magnetic Field (Gigaphoton)

(Cymer)

LDP: Discharge Produced Plasma

Laser Assisted Trigger Rotating Electrodes for Heat Dissipation

Gas curtain

EUVL Workshop 2012, June 4, 2012

NXE:3100 sub-system performance meets design targets and supports sub-27 nm imaging

AEIDEC

Status, Target & Persistent Effort

Core Element	Current Status	Target	Persistent Effort
0 Score 10			
Source	~10W @IF	250W @IF	 Laser stability Droplet generator stability Debris mitigation OoB reduction
Scanner	- NXE3100 / CDU: 1.4nm, DCOL: <1nm	Place NA0.33 to market in 2013	- Productivity
Mask	- φ-defect : 20-30/plate (>50nm) - Particle:	Ideally : 0	- φ-defect mitigation - To establish ABI - Handling/cleaning/pellicle
Resist/Process	- Resolution:16nm - Sensitivity: 30~mJ/cm ² - LWR:~5 nm	- 11nm - 10mJ/cm² - ~ 1.1 nm	 Thinner resist thickness Hardmask process, bias control LWR: build up consensus
Litho Integration	Small experience	Ready for HVM	Learn more - Defectivity - Total CD control - Total OL control

Summary

- ✓ Downscaling of LSI still makes sense for the cost reduction, performance improvement and power consumption.
- ✓ EUV lithography will be the main stream technology from cost and extendibility viewpoint.
- ✓ However, some key technologies still have fundamental issues. Persistent efforts are necessary to overcome the challenge for realizing EUVL.
- ✓ The source no doubt needs to increase in power dramatically and reach the set targets (main & pre-pulse laser, debris mitigation, droplet generation, IR reduction) with sufficient stability.
- ✓ The development of EUVL infrastructure, i.e. mask inspection, resist, etc. in consortia is a reasonable approach for reducing cost of pre-competitive technology development.
- ✓ The persistent efforts including the EUVL infrastructure development will definitely ensure the realization of EUV lithography.

Acknowledgement

The part of this work was supported by New Energy and Industrial Technology Development Organization (NEDO).

Thank you for your attention !!

