Source radiance requirements for EUV microscopes

Larissa Juschkin, Fergal O'Reilly

RWTH Aachen University, University College Dublin

Applications

XUV: short wavelength and strong light matter interaction

lateral & in-depth (3d) nm resolutions with element sensitivity and high throughput

<u>Microscopy</u>

- 3d imaging (cells, electronics)
- "no" sample preparation
- several µm penetration depths
- magnetic (spin) contrast with polarized light

Patterning

- high density arrays
- large exposition areas
- access to < 10 nm scale
- negligible proximity effect
- independent on substrate

Scatter/diffractometry

- nano-roughness
- nano-structures arrays
- nano-defect inspection
- lens less imaging with coherent light

<u>Spectroscopies</u>

- element selectivity
- chemical bonding (NEXAFS)
- small penetration depths of radiation (<100 nm)
- large grazing incidence angle

Compromise between source characteristics and application needs

Etendue or geometrical flux

Etendue of an elliptical source

$$G_{Quelle} = 2\pi^2 b^2 \int_{\theta} \sin \theta \cdot \sqrt{1 + \frac{a^2}{b^2} \tan^2 \theta} \cdot d\sin \theta$$

G. Derra and W. Singer, "Collection efficiency of EUV sources", Emerging Lithographic Technologies VII, Proc. Of SPIE, Vol. 5037, p.728-741, 2003

Collection efficiency of a volume source

Average power (of usable bandwidth) and etendue of different source concepts and existing sources

Source requirements for resolution matched microscopy

 $NA = 0.61 \times \lambda/RES \sim 0.2 - 0.3$ needed for resolution => $\Omega = 0.1 - 0.5$ sr radiation solid angle at sample

Magnification determined by resolution and detector pixel size => object field limitation through detector size and magnification

Etendue used by microscopy application ~ 10⁻⁸ – 10⁻⁶ cm²sr

Available incoherent sources: 10⁻² – 10⁻¹ cm²sr

Synchrotron based sources and XRLs: < 10⁻⁹ cm²sr

Necessary irradiation dose at sample is determined by contrast, photon energy, pixel size, magnification, detector quantum efficiency, and transmission of imaging optics and sample: 1 – 1000 mJ/cm².

Minimal exposure time determined by CCD read-out speed

=> required average source radiance ~ $10^{-2} - 10$ W/(cm²sr) within usable radiation bandwidth (one monochromatic line for zone plate or ~ 3 - 4 % for multilayer based optics)

Resolution matched imaging

It is only when the object image covers three pixels do we start to obtain an image that is more faithfully reproduced, and clearly represents a circular object.

 $M = 3 \cdot pix/RES$

Digital Camera Fundamentals

Sensitivity index

Probability

Page 10

RHEINISCH-WESTFÄLISCHE TECHNISCHE

IOCHSCHULE

EXPERIMENTAL PHYSICS OF EXTREME ULTRAVIOLET

Detector influence

Noise:

Noise =
$$\delta_{total} = \sqrt{\delta_{readout}^2 + F^2 \cdot M^2 \cdot (\delta_{dark}^2 + \delta_{CIC}^2 + \delta_{signal}^2)}$$

- sensor readout noise (crucial if fast readout needed)
- amplification: gain M; noise factor F (additional noise)
- dark (thermal) noise (temperature and time dependent)
- spurious noise (clock induced charge, small)
- the noise from the signal itself (photon noise)

Signal:

Signal =
$$M \cdot n_{\max} \cdot QE \cdot P$$
, $\delta_{signal} = n_{\max} \cdot \sqrt{QE \cdot P}$

$$\frac{Signal}{Noise} = \frac{n_{\max} \cdot QE \cdot P}{\sqrt{\kappa^2 \cdot (n_{\max}^2 \cdot QE \cdot P + N_{ark} + \delta_{CK}^2) + \delta_{readout}^2}} / M^2$$

A reasonably high level of confidence of signal detection $P \ge \frac{\delta_{readout}^2}{n_{\max}^2 \cdot QE} \sim 1$ requires signal noise be greater than others:

 $\delta_{readout} \approx 3 e^- @ 30 kHz$ (35 s readout of 1024x1024)

 $\approx 10 e^- @ 1 MHz$ (1 s readout)

 $n_{nh} \gtrsim 1 @ 30 \ kHz$ and $\gtrsim 15 @ 1 \ MHz$

Image contrast

The Rose criterion: Signal/Noise \geq 5 needed for 100% certainty in distinguishing image features: $P > \frac{23}{QE \cdot C^2} > 60$

Requirements on source radiance – bright field microscopy

XUV microscopy: Soft x-ray microscopy (Water Window)

Dr. Larissa Juschkin International Workshop on EUV and Soft X-Ray Sources October 8-11, 2012, Dublin, Ireland

OF EXTREME ULTRAVIOLET

Application: at-wavelength mask blank inspection for EUVL

Best data observed to date relative to specification of EUV mask blank requirements for two suppliers

Dr. Larissa Juschkin International Workshop on EUV and Soft X-Ray Sources October 8-11, 2012, Dublin, Ireland

mask defects - the leading challenge

Mask blank holder and positioning system

Requirements on source radiance – dark field microscopy

Dark field microscopy for defect inspection

Dark field operation: sensitivity to small structures Pinhole diffraction model and Mie scattering distribution as a function of the scattering angle for two diameters: 30 nm and 112 nm and for different materials

Detectable signal vs. defect size

Number of detectable photons as a function of defect size

Sensitivity matched dark field microscopy (scatterometry)

Summary – radiance requirements

- EUV and soft x-ray microscopy enables imaging of nanometer sized object features with high analytical sensitivity, very good spatial resolution, and penetration depths compatible with relevant sample sizes.
- Source radiance requirements are derived from the fundamental considerations of sample resolution, image contrast, detector quantum efficiency and throughput.
- Photon counting is characterized by Poisson statistics. Requirement of being able to distinguish between (noisy) signal and (noisy) background results in inverse dependence of radiance on contrast squared.
- The etendue used by a high resolution EUV imaging application scales with the area of the smallest feature to be resolved or detected which is of the order of λ^2 .
- Taking into account conservation of etendue ("not compressibility" of light) and photon energy, the required radiance is proportional to λ^{-3} .

 $L_{source} = \frac{25 \cdot fps \cdot h \cdot c/\lambda}{c^2 \cdot T_{system} \cdot \pi \cdot NA_{illumination}^2 \cdot A_{to \, resolve \, or \, detect}}$

In accessing the nano-world with laboratory imaging systems, this strong dependence implies a serious challenge for the source development.

Outlook

XUV plasma based sources

- very efficient technology
- successfully used in
 - EUVL & metrology

future research challenges

3d imaging

- combining of lateral and in-depth resolution
- cell nanotomography

Spectro-microscopy

- combining of spectral and lateral resolution
- magnetic domains

13.2 nm

High brilliance metrology sources

- small emitting volume
- XUV lasers

<u>Coherence</u>

- holography
- lens less imaging
- interference litho

Acknowledgements

TOS, RWTH-Aachen, Chair for Technology of Optical Systems

Matus Banyay, Sascha Brose, Serhiy Danylyuk, Ralf Freiberger, Johannes Hauck, Stefan Herbert, Hyun-Su Kim, Peter Loosen, Aleksey Maryasov, Jochen Stollenwerk, ...

ILT – EUV und Plasma Technology

Markus Benk, Klaus Bergmann, Felix Küpper, Willi Neff, Ralf Prümmer, Stefan Seiwert, ...

Bruker ASC, Bergisch-Gladbach

Xtreme Technologies, Ushio group

JARA Jülich Aachen Research Alliance

