EUV lithography: status, future requirements and challenges

Vadim Banine with the help of Rudy Peters, David Brandt, Igor Fomenkov, Maarten van Kampen, Andrei Yakunin, Vladimir Ivanov and many other people of ASML and Cymer

EUVL Dublin

November 2013

Public

Slide 2

Contents

Introduction Why EUVL Status of the source Summary and acknowledgements

Public

Slide 3

Contents

Introduction Why EUVL Status of the source Summary and acknowledgements

EUV is a cost effective solution

ASML

Public

Slide 5

EUV enables 50% Scaling for the 10 nm logic node

Layout restrictions and litho performance limit shrink to ~25% using immersion

OO120 Normalized die size [%] 100 6 80 60 Triple patterning does not show a process window 40 n 20 þ 6 0 triple EUV Reference double N20/16 patterning patterning

EUV meets all litho requirements

ASML's NXE:3100 and NXE:3300B

	ASML	ASML Slice
	NXE:3100	NXE:3300B
NA	0.25	0.33
Illumination	Conventional 0.8 σ	Conventional 0.9 σ Off-axis illumination
Resolution	27 nm	22 nm
Dedicated Chuck Overlay / Matched Machine Overlay	4.0 nm / 7.0 nm	3.0 nm / 5.0 nm
Productivity	6 - 60 Wafers / hour	50 - 125 Wafers / hour
Resist Dose	10 mJ / cm2	15 mJ / cm2

The NXE:3100 has exposed >46,000 wafers

Public

Slide 7

Public

Slide 8

Contents

Introduction NXE:3300B

Eleven NXE:3300B systems in various states of integration

ASML

Resolution shown on NXE:3300B for dense line spaces, regular and staggered contact holes; all single exposures

Public Slide 10

Quasar 30 (CAR)

Large Annular (CAR)

NXE:3300B enables single exposure random logic metal layer with large DoF *minimum HP 23 nm (N10 logic cell)*

Public

Slide 11

EUV			ArF immersion	
Node: N10 (23nnTarget insertion	n HP) point for EUV	•	Node: N20 (32nm HP)	
Single Exposure Conventional illumination		1	 Double Patterning (design split) 	
 Best focus difference ~10nm 		1	Best focus difference up to 40-60nm	
Overlapping DoF current 100120nm (expected to improve after further optimization (e.g. OPC))		 Overlapping DoF typical ≈ 60nm 		
-12mm	Omm		+12mm	
yer here	가만에 개대한	E		

Excellent print performance over the full exposure slit

EUV enables aggressive shrink on 2D logic shrink possible beyond N10 node requirement

ASML

NXE3300B: Line ends imaging - tip2tip and tip2line - supports 10nm logic node with Quasar illumination

ASML

NXE:3300B imaging and overlay beyond expectations matched overlay to immersion ~3.5nm

Scanner capability

CPE (6 par per field)

ASML

>900,000 wafer cycled on NXE:3300B for integration and reliability testing

-				
		100 wafers per Hour	.00 wafers per Hour	
	unit	Required	NXE 3300B results	
Nove parameters				
tep velocity	[m/s]	1	1	
can velocity expose	[m/s]	0.25	0.25	
can acceleration expose x/y	[m/s ²]	35/25	35/25	
can velocity measure	[m/s]	1	1	
erk x/y	[m/s²]	3500/2500	3500/2500	
VS accuracy at expose				
ЛА-ху	[nm]	1	1	
ЛА-z	[nm]	6	4.2	
/ISD-xy	[nm]	2.2	2.1	
/ISD-z	[nm]	21	9.1	
otal (WS-RS/4) accuracy at expose				
ЛА-ху	[nm]	0.6	0.4	
ЛА-z	[nm]	6	4.2	
/SD-xy	[nm]	2.5	1.9	
/ISD-z	[nm]	21	9.1	

Public

ASML

Slide 15

Public

Slide 16

Contents

Introduction Why EUVL Status of the source Summary and acknowledgements

EUV source system cross-section

ASML

Source Cymer ASML company

Cymer/ASML LPP Source Development History

ASML

EUV Power Scaling *Top Technology Challenges*

0

Public Slide 20

High power CO₂ Laser: to 47 kW

High Power Seed Laser is Key to the Drive Laser 350W at 80kHz Demonstrated

ASML

- Seed Laser power delivery to the amplifiers is critical to achieving saturation and maximum power extraction from the amplifiers
- 350W target design power at 80 kHz repetition rate
 - Already achieved in system-level bench testing

New Amplifier for Increase Power is Operational Reached maximum of 35kW with good laser mode profile

- Higher power amplifier development completed at supplier
- Repeatable, stable operation at ~35kW (increased from 20kW)
 - Single amplifier continuous (cw) output power
 - Pulsed mode operation is ~30% of cw
- Good beam quality measured \rightarrow good focusability

ASML

Public Slide 22

Source Cymer ASML company

EUV Power Scaling *Top Technology Challenges*

Public

Public Slide 24

Shadow-gram from a side

Diagnostics is at place to understand and tune the MOPA pre-pulse process

Modeling of the particle break down

Model

Experimentl

Model is being created to predict the droplet expansion behaviour

More on this in the presentation of V. Ivanov at this conference

Public Slide 25

ASML

CE: RZLINE vs measured for various target and laser ASML configurations

Data points:

Lab N1

- 1. MOPA+PP; Type A
- 2. MOPA+PP; Type B
- 3. TEA; Plane target (E=0.3 J)

Slide 26

Lab N2:

- 4. MOPA+PP Type C
- 5. MOPA+ PP Type D
- 6. MOPA+ PP Type E

Lab N3:

7. Other wavelength

- No fitting parameters are used in the model
- RZLINE predicts well CE trend for various target geometries
- Maximum predicted CE=5.5% (for λ =10.6 um)

RZLINE vs experimental CE data on plane target (variation of laser spot size)

Public Slide 27

RZLINE predicts well optimal power density and general CE trend on plane target

RZLINE vs Cymer CE data on plane target (Z-variation)

ASML

Public Slide 28

Cymer experiment (SPIE data)

Laser-Produced Plasma Light Source for EUVL

Igor V. Fomenkov*, David C. Brandt, Alexander N. Bykanov, Alex I. Ershov, William N. Partlo, David W. Myers, Norbert R. Böwering, Nigel R. Farrar, Georgiy O. Vaschenko, Oleh V. Khodykin, Jerzy R. Hoffman, Christopher P. Chrobak, Shailendra N. Srivastava, Daniel J. Golich, David A. Vidusek, Silvia De Dea, Richard R. Hou

Proc. of SPIE Vol. 7271 727138-1

RZLINE with laser caustics

RZLINE reproduces "double hump" behavior of CE

This module is developed to account for back reflection of laser

Slide 28

MOPA Prepulse Technology for High Power Sources Improved Prepulse shows 3.7% CE, driven by target size and stability (droplet and expanded target)

ASML

EUV Power Scaling *Top Technology Challenges*

Public

Slide 30 0 0 Dose control: targeting and laser stability

Repeatable 50W MOPA PrePulse EUV Power and Dose Stability *Dose Stability <±0.5%, Die Yield >99.7%*

ASML

MOPA PrePulse sources demonstrated repeatable, stable performance & dose controlled

Public Slide 32

ASML

EUV Power Scaling *Top Technology Challenges*

Public Slide 33

0 Collector lifetime: debris protection

3100 Collector Lifetime in the

Champion lifetime in the field ~11 months (~120 billion pulses)

Six collectors with >6 months lifetime

Source Cymer ASML company

Modeling of flow and collector contamination

Model example

Example of model calculations for different source operation regimes

Background pressure $P_1 = P$ Sn ion flux reaches collector

Target:

Minimization of collector contamination

Model assists in determination of EUV source operation regime with low collector contamination rate

More on this in the presentation of V. Ivanov at this conference

Public Slide 35

ASML

Public Slide 36

In-situ collector cleaning has been demonstrated and is a key enabler for availability and CoO

- Cleaning on standard MLM capped NXE:3100 Collector
 - Tin deposited during normal EUV operation was removed with reactive gas

Start of test
 Area to be cleaned

Collector after cleaning in-situ (in the vessel) → reflectivity fully recovered

Collector Cleaning using RF Plasma

ASML

olic

37

Cymer funded project with University of Illinois at Urbana – Champaign Demonstrated 200nm Sn cleaning from Si sample placed on collector surface Demonstrated 25nm Sn cleaning from the entire 300mm dummy LT-1 collector

200nm Sn cleaning from Si samples placed on collector surface 50nm Sn coated Si samples were

Deposited Sr

Onm Sn and 50nm Sn coated Si samples were stalled at various locations on the collector

Etched Sn

20.0kV 12.2mm x4.50k 2/8/2013 01:41

25nm Sn cleaning from 300mm dummy collector

Source Cymer ASML company

20.0kV 12.3mm v4.50k 2/8/2013.01-35

MOPA +PP collector protection demonstrated on NXE:3100 source with full reflectivity recovery

Bottom 1.2 Mpulses $R/R_0 = 100\%$

Bottom 15 Gpulses R/R₀ ~ 95% Top

After cleaning (15 Gp) $R/R_0 \sim 100\%$

Source operated at 40W and all loops closed

Public Slide 38

ASML

EUV source power roadmap with dose control

Power scaling is achieved with increased CO_2 laser power and conversion efficiency

	NXE:3300B	NXE:3300B	NXE:3300B
EUV dose controlled power (in-burst)	80W	125W	250W
Drive Laser	26kW	33kW	47kW
CE	3.0%	3.0%	3.3%

ASML

Public

Slide 40

Contents

Introduction Why EUVL Status of the source Summary and acknowledgements

Summary

- NXE:3100 in use for process and device development at customers
- **NXE:3300B** performance fit for customer development 10nm Logic and sub-20nm DRAM
 - Overlay performance of DCO<2nm and MMO<4nm demonstrated
 - Resolution of 13nm LS and 18nm Contact Holes demonstrated. Further process optimization to be done
 - Good imaging performance for 1D (Line Space), 2D (Contact Holes and Metal 1), and Tip-to-Tip / Tip-to-Line have been shown
 - Dose reduction achieved by utilizing contrast enhancement with off-axis illumination
 - 50W repeatable source power demonstrated with good dose control

Public Slide 42

The work presented today, is the result of hard work and dedication of teams at ASML, Cymer and many technology partners worldwide including our customers

Special thanks to our partners and customers for allowing us to use some of their data in this presentation