For Panel Discussion

2014 International Workshop on EUV Lithography

Dr. Hakaru Mizoguchi CTO & Executive Vice President Gigaphoton Inc.

Copyright © 2014 Gigaphoton Inc.

Copyright ©2014 Gigaphoton Inc. All Rights Reserved.

DOC# ED14L-153

2014 EUVL Workshop Panel Discussion

Can EUV deliver patterning solutions for 7nm node? Also, please list your opinion on topics listed below

A: What is the latest status for source power, available for NXE 3300B? What is your opinion on source power requirements for 7 and 5 nm nodes?

B: Will EUV Double patterning be required at 7 nm? What will be required at 5nm node? Do you expect any OPC related issues?

C: Mask: What will be the new material requirements and mask size requirements to accommodate higher NA patterning? Do you expect mask etch complexity with new materials? How ready are masks to support 7 nm manufacturing? What is the status of mask defect inspection and repair tools?

D. Pellicle: Is a no-pellicle approach a show-stopper for HVM insertion of EUVL? What additional restrictions do you expect on inspection due to pellicle?

E. What are different device types and lithography needed at various nodes, e.g., 3D NAND, III-V Logic, Post FINFET Era etc.

Agenda

1. Review of Panel Discussion Topics and review of last 2 panel discussion conclusions (Moderators)

- 2. Panelists
- 3. Summary

High Power EUV Light Source

2014 Jan

2014 May

Power-up Scenario of HVM Sources

Next target is 12 kW by upgrading the pre-amplifier (installation is on going now)

	Target at Plasma	System	Oscillat or		Pre- Amplifie r		.	Main Amplifier					
Current Proto #1	Пазта	Enduranc	GF	21 -		R		Т		Т			
	5kW	e Testing Platform	GF	21		R		Т		Т		т	
Current Proto #2	8kW	Power Up Testing	GF	יין און		М		T		т		Т	
	>12kW	Power Up Testing	GF	2		М		M Valio	lated	M performane	ces at	M system	
		Customer	Copyright ©2014 Gigaphoton Inc. All Rights Reserved. June 23, 20										

Power-up Scenario of HVM Sources

We are achieving **solid** and **steady** progress towards realizing our HVM EUV source

	New Data Ava	ailable Very Soo	n!	Next Target				
EUV clean power	25W	43W	??W	150W	250W			
Target	2013, Q4	2014, Q1	2014,Q2	2014,Q4	2015,Q2			
CO ₂ power at plasma	5kW	8kW	14kW	>14kW	> 20kW			
CE	2.5%	3%	??%	4%	> 4.5%			
Plasma to IF clean	21.7%	21.7%	??%	26.7%	26.7%			
CO ₂ laser	2 main amp. system	3 main amp. system	Mitsubishi pre. amp.	Mitsubishi pre. amp	Mitsubishi main amp. system			
Pre-pulse laser	ps-laser	ps-laser	ps-laser	ps-laser	ps-laser			
Collector mirror	V3 type	V3 type	V5 type	V5 type	V5 type			

History of LPP Source Development in Japan

Extendibility to 1kW EUV Power (1)

Feasibility study of EUV Output Power vs. CO2 Input Power

Feasibility study of extendibility to 1kW

- Conversion efficiency is Key. At least achievement of CE>4% is essentially important. If not, CO2 laser will become >100kW.
- At least >50kW CO2 laser power must be realized. Even in best case of CE=8%.
- I believe; 1000W EUV source is feasible in future, from the technical data (experiment of CE and CO2 laser) and technical expectations at present.

GIGAPHOTON CONFIDENTIAL

Extendibility to 1kW EUV Power (2)

Possible scale up scenario of EUV Output Power vs. CO₂ Input Power

EUV ave.Power[W]						Conver	sion Efficie	ncy [%]								
@100kHz				2%	3%	4%	5%	<mark>6%</mark>	7%	8%						
202 laser Energy [mJ]	15		1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
	50		5	19.1	28.7	38.2	47.8	57.3	66.9	76.4						
	100		10	46.4	69.6	92.8	116.0	139.2	162.4	185.6						
	150		15	73.7	110.6	147.4	184.3	221.1	258.0	294.8						
	200		20	101.0	15,5	202.0	252.5	303.0	353.5	404.0	Our nossi	hla scala-un scanaria				
	250		25	128.3	192.5	256.6	320.8	384.9	449.1	513.2	Our possi	ine sca	scale-up scenario			
	300	[kV	30	155.6	233.4	311.2	389.0	466.8	544.6	622.4						
	350	e	35	182.9	274.4	365.8	457.3	548.7	640.2	731.6						
	400	NO V	40	210.2	315.3	420.4	525.5	630.6	735.7	840.8						
	450	Ц.	45	237.5	356.3	475.0	593.8	712.5	831.3	950.0						
	500	ave	50	264.8	397.2	529.6	662.0	794.4	926.8	1059.2			HVM (2)	HVM(3.4)		
	550	er	55	292.1	438.2	584.2	730.3	876.3	1022.4	1168.4	EUV power	250W	500W	1000W		
	600	las	60	319.4	4/9.1	638.8	/98.5	958.2	1117.9	12//.6						
	650	02	65	346.7	520.1	693.4	866.8	1040.1	1213.5	1386.8	CE	4%	5%	6%		
	/00	ö	/0	3/4.0	561.0	/48.0	935.0	1122.0	1309.0	1496.0	Dulas muta			100111-		
	/50		/5	401.3	602.0	802.6	1003.3	1203.9	1404.6	1605.2	Puise rate		TUUKHZ	TUUKHZ		
	800		80	428.0	692.0	807.Z	1120.0	1267.7	1505.7	19226	Pre-pulse laser	Pico-s	Pico-s	Pico-s		
	000		00	400.9	724.8	911.0	1208.0	1//0 6	1601.2	1023.0						
	950		95	510.5	765.8	1021.0	1276.3	1531.5	1786.8	2042.0	CO2 laser power	25kW	40kW	65kW		
	1000		100	537.8	806.7	1075.6	1344.5	1613.4	1882.3	2151.2	# of main amps	3	5	8		

Debris Mitigation Technology

Issue with previous gas mitigation techniques

The Vicious Circle of Mitigation and Output Power

Higher Power

Gigaphoton has broken this vicious circle by developing the Magnetic Debris Mitigation system

Increase fragment and deposition Increase Hydrogen pressure to compensate

Debris Mitigation Technology

Gigaphoton's Magnetic Debris Mitigation concept

Higher CE and Power

- · Optimum wavelength to transform droplets into fine mist
- Higher CE achievement with ideal expansion of the fine mist

Long Life Chamber

- Debris mitigation by magnetic field
- Ionized tin atoms are guided to tin catcher by magnetic field

Thank You

