

Gain enhancements of CO₂ laser amplifiers by using transverse-gas-flow configuration to boost up driving powers for EUV generations

<u>Koji Yasui</u>¹ and Jun-ichi Nishimae² Mitsubishi Electric Corporation

¹Head quarter, Factory Automation Systems Group, Tokyo, Japan Yasui.Koji@aj.MitsubishiElectric.co.jp

²Advanced technology R&D center, Hyogo, Japan Nishimae.Junichi@cw.MitsubishiElectric.co.jp

MITSUBISHI ELECTRIC CORPORATION

- EUV lithography fields -
 - 1. Not enough EUV powers achieved so far.
 - 2. Stable EUV apparatus required for real business.(1)Physical stability(2)Business capability

I. Introduction (1/2)

Transverse-gas-flow CO2 lasers vs. other CO2 lasers

1. Transvers-gas-flow

Low flow +Short length ⇒Stable operation

Higher gain <u>⇒Higher power</u> 2. Fast-axial-flow Fast flow Long length

<u>3. No flow</u> No flow Wide area

Transverse-gas-flow CO₂ laser

• Gas flow is flowing transversely to the laser beams

<u>Over view</u>

- Four transverse-gas-flow amplifiers
 - Five-folded optical path in amp #1
 - Straight paths in amp #2,#3,#4

II. Experimental apparatus (2/3)

Over view

II. Experimental apparatus (3/3)

Amplifier L2.4m H 0.9m W 0.8m

Power source L2.6m H 0.65m W 0.8m

Operating conditions

Electrical input powers for discharge: 100 kW x4, duty 33%
Laser input: 15 ns, 100 kHz

Master Oscillator	
Wavelength	10.6 um P(20,22)
Repetition frequency	100 kHz
Pulse duration	<u>15 ns</u>
Amplifiers	
Laser input	22 W max
Beam radius(1/e²)	6 mm@amp#1 , 15 mm@amp#2−4
Electrical input	100 kW max x4
Discharge duty	33%
Discharge volume	5x4x188 cm ³ x4
Gas pressure	7.0 kPa

Single amplifier performance

Amp #1 Waveform and Beam pattern

Amp.: OFF

Output power 21 kW was demonstrated (duty 33%)

eco Change

for a greener tomorrow

Pulse shape example

- Output pulse duration: 23 ns
- Expected pulse stretch

- 1. CO₂ laser power of 21 kW was achieved.
- 2. Higher power (approximately, 1.6times) was achieved compared with axial-flow CO₂ lasers at the same electrical input of 400kW.
- 3. Electrical-to-optical efficiency was 5.3%

for a greener tomorrow

Theoretical calculations

for a greener tomorrow

IV. Future prospects (2/2)

By applying our solution: transverse-gas-flow CO₂ lasers,

- 1. Driver power saturation problems could be solved.
- 2. Physical stability of EUV powers could be improved.
- Reliable supply could be guaranteed backed up healthy growing material processing markets.

 The experiments were performed by research members at the advanced technology R&D center, Mitsubishi Electric corp. with valuable supports by Gigaphoton Inc.

 A part of this work was supported by The New Energy and Industrial Technology Development Organization (NEDO, Japan).

Thank you very much for your attention.

Thank you again for your invitation to this workshop.

