Colliding Laser-Produced Plasmas as Targets for Laser-Generated EUV Sources.

Thomas Cummins, Colm O'Gorman, Padraig Dunne, Emma Sokell, Gerry O'Sullivan & Paddy Hayden.

Motivation.

- Experimental Set-up.
- <u>Results/Discussion</u>.

Colliding Laser-Produced Plasmas as Targets for Laser-Generated Extreme Ultraviolet Sources.

T. Cummins,¹ C. O'Gorman,¹ P. Dunne,¹ E. Sokell,¹ G. O'Sullivan,¹ and P. Hayden^{1, 2, a)}

¹⁾School of Physics, University College Dublin, Belfield, Dublin 4, Ireland

²⁾National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9, Ireland

Accepted for publication in Applied Physics Letters (2014)

 Colliding Plasmas can create a Stagnation Layer, whose nature is determined by the collisionality parameter ς.

$$\zeta = \frac{D}{\lambda_{ii}} \quad \begin{array}{l} \text{Hough et al J. App. Phys 107} \\ \text{O24904 (2010)} \end{array}$$

Where D is the ablation front separation & λ_{ii} is the ion-ion mean free path:

$$\lambda_{ii}(1 \rightarrow 2) = \frac{(m_1 v_{12}^2)^2}{4 \pi e^4 Z^4 n_2 Ln(\Lambda_{12})}$$

Rambo and Denavit, Phys. Plasmas 1 4050 (1994)

Parameter Control:

- Initial plasma (ablation front) separation D
- Laser intensity relates to v₁₂
- Target wedge angle
- Laser wavelength related to plasma density

- Form stagnation layer
- Tailor plasma temperature, density & density gradient
- Irradiate with CO₂ laser to re-heat

Images of the seed plasmas and stagnation layer in the 400–600 nm wavelength range for A) no reheating with the CO_2 laser and B) reheating at a time delay of 50 ns. The color scales in each image are the same.

Ion Behaviour:

For normal laser incidence •Highest ion current along *target normal* •Highest ion KE along *target normal*

•Larger angles – Lower KE

Aodh O'Connor PhD Thesis UCD (2009)

•Stagnation layer results from the interaction between two plumes

75₀.

300,

6

2200

780,

 $\overline{\gamma}_{\mathcal{V}_{\circ}}$

PRO.

₹¥°

ŝ

200-

Ś

180°

る。

Ь.

°o.

Ъ.

ŝ

SOG

210

The Wedge Target

•Turn targets towards each other – Wedge target

Higher ion current towards each other
High velocity ions are travelling towards each other – More interpenetration

Larger stagnation layer
Better matching to CO₂

Comparison of Spectra:

Quantitative results:

Experimental set-up		Total			$\rm CO_2$ laser	
	Input laser	In-band	Conversion	Input laser	In-band	Conversion
	energy (mJ)	energy (mJ)	efficiency $(\%)$	energy (mJ)	energy (mJ)	efficiency $(\%)$
Flat Target						
Long CO_2 pulse	$1220.6~(\pm 70)$	$23.6 (\pm 1.3)$	$1.9 \ (\pm 0.2)$	$1220.6~(\pm 70)$	$23.6 (\pm 1.3)$	$1.9 \ (\pm 0.2)$
Short CO_2 pulse	$151.7 (\pm 3)$	$5.0 \ (\pm 0.2)$	$3.3 (\pm 0.2)$	$151.7 (\pm 3)$	$5.0(\pm 0.2)$	$3.3 (\pm 0.2)$
Nd:YAG pulse only	$636.6 (\pm 8)$	$15.2 \ (\pm 0.5)$	$2.4 (\pm 0.1)$	0	0	0
Double pulse						
(80 ns delay)	$760.7 (\pm 10)$	$20.2~(\pm 0.7)$	$2.7 (\pm 0.1)$	$124.1 \ (\pm 2)$	$5.1 \ (\pm 0.2)$	$4.1 \ (\pm 0.2)$
Colliding plasmas from flat target						
Nd:YAG pulse only	$491.9 (\pm 8)$	$11.2 \ (\pm 0.5)$	$2.3 (\pm 0.1)$	0	0	0
Double pulse						
(40 ns delay)	$627.5~(\pm 17)$	$13.5~(\pm 0.5)$	$2.2 (\pm 0.1)$	$135.6 \ (\pm 9)$	$2.4 \ (\pm 0.5)$	$1.8 \ (\pm 0.3)$
Colliding plasmas from wedge target						
Nd:YAG pulse only	$269.1 (\pm 8)$	$5.7 (\pm 0.5)$	$2.1 \ (\pm 0.2)$	0	0	0
Double pulse						
(60 ns delay)	$522.6~(\pm 16)$	$18.6 (\pm 1.2)$	$3.6 (\pm 0.2)$	$253.5 (\pm 8)$	$13.0 (\pm 0.1)$	$5.1 (\pm 0.2)$

The CE of 5.1% does not include either the energy used to form the seed plasmas or the EUV emitted from them.

CO₂ Laser Spatial Overlap:

The CO₂ beam has a diameter of 520 microns, while the stagnation layer has a 350 microns. Accounting for this factor points to a potential CE of ~ 7%.

Conclusions

- Colliding Plasmas can great the optimum conditions for coupling CO₂ laser radiation into plasmas.
- Grooved targets allow for improved stagnation layer
- Potentially high CE values obtainable
- Much parameter space remains to be probed.

Acknowledgements

- <u>UCD</u>: Dr. Tony Donnelly, Dr. Paul Sheridan, Dr. Ken Fahy, Enda Scally, Robert Stefaunuik, Imam Kambali, Niall Kennedy and Elaine Long
- Science Foundation Ireland under Principal Investigator Research Grant No. 07/IN.1/1771.

Thank You