

2014 International Workshop on EUV Lithography

# Current status and expectation of EUV lithography

June 26, 2014

#### Takayuki UCHIYAMA

#### **TOSHIBA** Corporation



Copyright 2014, Toshiba Corporation.

## Contents

## >Introduction

## Lithography Challenges for Memory

- Lithography for sub-10nm
  - EUVL
  - DSA
- Nano-particle management

## ≻Summary



# Introduction



#### **Information-Explosion and Cloud Service & M2M**



## **Toshiba Unified Storage Strategy**

#### **Total Storage Solution by Toshiba**



Nobuo Hayasaka, EIDEC Symposium 2014.

TOSHIBA

Leading Innovation >>>

## **Roadmap for future memory**



Leading Innovation >>>

2014 International Workshop on EUV Lithography

© 2014 Toshiba Corporation 6

# Lithography Challenges for Memory



## Pattern shrink roadmap based on ITRS 2013



KERAM

2014 International Workshop on EUV Lithography

D

O

O

Leading Innovation >>>

# Lithography for sub-10nm

Extension of immersion lithography

1D layout by SAxP + cut mask

- L&S by SADP(19 nm)→SAQP(10 nm)→SAOP(sub-10 nm)
- Cut mask by LE^8~ or NGL

Issues Restrict design Complex process control Long process steps



• NGL

- o 2D layout by single exposure
  - High NA EUVL
- Bottom-up patterning
  - DSAL + EUVL

Field size, Source, Optics, Resist

Overlay, Defectivity

## We need NGL for sub 10nm with low cost!

**TOSHIBA** Leading Innovation >>>

## The potential of EUVL is attractive.

2

2

| $\frac{1}{NA} = \frac{1}{NA} $ |          |      |      |      |      |    |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|------|------|------|----|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 0.40 | 0.35 | 0.30 | 0.25 | k1 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.25     | 21.6 | 18.9 | 16.2 | 13.5 |    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.30     | 18.0 | 15.8 | 13.5 | 11.3 |    |  |  |  |  |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.33     | 16.4 | 14.3 | 12.3 | 10.2 | _  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.35     | 15.4 | 13.5 | 11.6 | 9.6  |    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.40     | 13.5 | 11.8 | 10.1 | 8.4  | _  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.45     | 12.0 | 10.5 | 9.0  | 7.5  |    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.50     | 10.8 | 9.5  | 8.1  | 6.8  |    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.55     | 9.8  | 8.6  | 7.4  | 6.1  |    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0_60     | 9 0  | 79   | 6.8  | 5.6  |    |  |  |  |  |
| $NA \geq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D.6 will | 6.2  | 5.2  |      |      |    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.70     | 7.7  | 6.8  | 5.8  | 4.8  |    |  |  |  |  |

· ovnosura wavalanath

## **Concerns for high NA EUVL**

#### > High NA EUV tradeoff

• Resolution(high NA) / full field (throughput)/ 6 inch mask

#### > High power source

- Power loss by increasing in PO mirror number (6  $\rightarrow$  8?)
- Low sensitivity resist

#### > Optics for high NA and high power

- Increase in NA (> 0.5)→ Tighter mirror roughness and aberration specification for larger mirror
- Damage due to high power EUV light
  - ML mirror, mask and Pellicle durability

#### Resist for high NA

• RLS tradeoff: Resolution / LER / Sensitivity ~shot noise issue

## **High-NA EUVL tradeoff**





#### Full-field 6inch mask can keep with high NA by new mask structure !!

Takashi Kamo, et al, 2013 International Symposium on Extreme Ultraviolet Lithography

**TOSHIBA** 2014 Internation

## **Process Flow**



- In order to fabricate fine pattern, hardmask process is selected. Ta layer works as a secondary hardmask to etch underlying layers.
- All the dry etching processes are carried out by ARES<sup>™</sup> (Advanced Reticle Etch System, Shibaura Mechatronics).

Takashi Kamo, et al, 2013 International Symposium on Extreme Ultraviolet Lithography



# Etched ML pattern of 40 nm hp After HM/Ta removal ML Substrate

Takashi Kamo, et al, 2013 International Symposium on Extreme Ultraviolet Lithography

#### Etched multilayer L/S pattern of 40 nm hp on mask (<u>10 nm hp on wafer</u> using 4X optics) is achieved. High-NA EUVL with 4X full-field 6 inch mask will be implemented by etched ML mask.

Leading Innovation >>>

## **High power source**

CO2 laser

- LPP(Laser Produced Plasma)
  - <u>Current level: 20 40W</u>
  - Challenges
    - Heat treatment
    - Debris
       Collector mirror
    - Lifetime of collector mirror
    - Running cost

Target of source power: 250 W in 2015
Big gap between target and current level
High NA EUVL will need higher power
Scalability of LPP source to >> 250 W ?



2014 International Workshop on EUV Lithography

**IF:** Intermediate Focus

Sn droplet

## **FEL for EUV source**

## Example of high power FEL [~ >10kW]



An FEL has the potential of high power source, for example over 10kW to multiple scanners. But FEL for EUV source is still in the conceptual stage.

**TOSHIBA** Leading Innovation >>>

## **Concerns for FEL**

- Proof of concept; FEL of λ=13.5 nm with high power of > 10 kW
- Availability for 365D/24H
- Impact for wafer cost
- Electrical power consumption
- Facilities size

#### • Timely readiness; long lead items

## **Key technologies of EUV-FEL**



Leading Innovation >>>

## **XFEL in the world**



#### No FEL of $\lambda = 13.5$ nm in the world.



# FEL and ERL technologies in Japan

SACLA x-ray FEL (RIKEN, Hyogo)





 $\lambda = 0.1$  nm

Courtesy of RIKEN

IR-ERL-FEL (JAEA, Tsukuba)



 $\lambda \sim 50 \mu m$ 2kW

Courtesy of R. Hajima

There are many fundamental technologies related to FEL and ERL in Japan. By using current technologies and experience, implementation of EUV-

FEL source will be possible. But it will take long time to develop.



## **Comparison of wafer cost**

(preliminary estimation)



#### Wafer cost of FEL is expected to be lower than LPP.

## **Electric power consumption**



#### ERL will reduce the electric power consumption of FEL.

**TOSHIBA** Leading Innovation >>>

## **Concerns for FEL**

#### • Proof of concept; $\lambda = 13.5 \text{ nm} / > 10 \text{ kW}$

> ?? Need research and development

- Availability for 365D/24H
  - Redundancy system
- Impact for wafer cost
  - FEL cost is expected to be lower than LPP. Need detail estimation.
- Electrical power consumption
  - > FEL will be better than LPP.
- Facility size

Leading Innovation >>>

> Very large underground facilities (~100 m)

• Timely readiness; long lead time items

> Long term project management

## **Optics for high NA and high power**

- ➢ Increase in NA (≥ 0.6) leads the specification of mirror roughness and aberration tighter.
   ➢ Damage due to high power EUV light for all optics (e. g. beam splitter and transport system, ML mirror, mask and pellicle)
  - → Concern for durability



## **EUV resist tradeoff**



Difficult to overcome RLS tradeoff. We need high resolution 1<sup>st</sup> for sub-10 nm. Not only CAR but also <u>alternative platform resist</u> such as inorganic resist should be considered more.

**TOSHIBA** Leading Innovation >>>

## DSA has the potential of sub-10nm patterning.

DSA will be a complementary technology for all other lithography without expensive exposure tool. → potential of low cost lithography





2014 International Workshop on EUV Lithography

## **DSA** collaboration

We hope DSA development for sub-10 nm patterning as complementary technology for NGL will be accelerated by collaboration.



2014 International Workshop on EUV Lithography

Leading Innovation >>>

## **EIDEC** activities

#### **Blank Inspection technology**

- •Actinic BI tool technology
- Lithographic impact
- Defect characterization



#### **EUV Resist out-gassing Control**

- Criteria of resist out-gassing
- Quantitative analysis
- EB based method
- Correlation between EB & EUV



#### DSA research

- DSA standard process platform
- High χ material & process
- DSA simulation
- 3D nanostructure analysis

#### Patterned mask Inspection technology

- PMI tool technology with EB projection optics
- Defect characterization
- Lithographic impact



#### **EUV Resist Material research**

- SFET utilization
- Fundamental research
- New resist platform
- Alternative resist process



Courtesy of EIDEC

#### We hope to make full use of EIDEC results for implementation of NGL.

Leading Innovation >>>

2014 International Workshop on EUV Lithography

100 nm

## **Trend of EUV lithography**



TOSHIBA

Leading Innovation >>>

## Nano-particle management

- Nano-particle and -chemical contamination will be critical issues of manufacturing for future memory.
- There is a <u>big gap</u> between current level and future requirement, as follows.

|                       | Current level | Req. in 2016 | Req. in 2020 |
|-----------------------|---------------|--------------|--------------|
| Min. defect size (nm) | 25            | 12           | 5            |
| Defect density (/cm2) | < 1           | < 0.1        | < 0.01       |

We need to establish nano-particle control & management techniques to close the gap. Keeping cleanness, visualization of contamination, and cleaning technique are essential for mass production of future memory.

#### Lithography candidates for each device generation

| (Table ORTC & Table PIDS7b of ITRS 2013) |                                       |    |    |    |            |      |           |    |            |       |             |                  |                        |     |     |
|------------------------------------------|---------------------------------------|----|----|----|------------|------|-----------|----|------------|-------|-------------|------------------|------------------------|-----|-----|
|                                          | 13                                    | 14 | 15 | 16 | 17         | 18   | 19        | 20 | 21         | 22    | 23          | 24               | 25                     | 26  | 27  |
| Logic<br>node                            | 16/<br>14                             | -  | 10 | FU | 7<br>V I F | I FI | 5<br>FI F |    | 3.5<br>Hig | ıh N/ | 2.5<br>A FU | <b>v</b> / I     | 1.8<br>DSA             |     | 1.3 |
| Logic<br>Metal hp                        | 40                                    | 32 | 32 | 28 | 25         | 23   | 20        | 18 | 16         | 14.2  | 12.6        | 11.3             | 10.0                   | 8.9 | 8.0 |
| Logic<br>Fin hp                          | 30<br>SA                              | 24 | 24 | 21 | 19         | 17   | 15        | 13 | 12         | 10.6  | 9.5         | 8.4              | 7.5                    | 6.7 | 6.0 |
| NAND<br>Flash 20 Multiple patterning     |                                       |    |    |    |            |      |           |    |            |       |             |                  |                        |     |     |
| NAND<br>Flash 3D                         | or  High NA EUV/DSA+EUV Low power EUV |    |    |    |            |      |           |    |            |       |             |                  |                        |     |     |
| DRAM                                     |                                       |    |    |    |            |      |           |    |            |       |             |                  |                        |     |     |
| PCRAM                                    | <b>We choose the lithography</b>      |    |    |    |            |      |           |    |            |       |             |                  | 7                      |     |     |
| <b>Β</b> <sub>Θ</sub> <b>Β</b> ΔΜ        | f                                     | ro | m  | th | er         | DOI  | nt        | of | Vi         | ew    | / 0         | f <mark>c</mark> | <b>0S</b> <sup>'</sup> |     |     |

TOSHIBA

Leading Innovation >>>

## Summary

- High NA EUVL is the most promising candidate for sub-10 nm lithography, because of its patterning potential.
- We should take our best effort to establish <u>cost effective</u> high NA EUVL.
- > There are many <u>concerns</u> for high NA EUVL.
  - Etched ML mask will enable <u>4X full-field 6 inch mask</u>.
  - <u>Higher power source</u> will be required for sub-10 nm. An FEL is one of the candidates for future high power source.
  - <u>Damage</u> due to high power EUV light for all optics is concern for durability.
  - Alternative platform <u>resist</u> should be considered more for sub-10 nm.
- DSA will be <u>complementary</u> technology to all other lithography for sub-10 nm.
- We need to establish <u>nano-particle</u> control & management techniques for future scaling.

# **TOSHIBA** Leading Innovation >>>

