

EUVL Activities in South Korea

2014.06.25

Jinho Ahn

Hanyang University, Seoul, South Korea

Who are interested in EUVL?


Device manufacturer and material supplier -Samsung : DRAM, Logic, High-end Foundry -SK hynix: DRAM -Kumho Petrochemical: Photoresist

Academia and Research Institute

-Hanyang Univ.: strongest activities on Mask/Pellicle/Cleaning/Process Simulation -SKKU, Inha Univ., KAIST etc.

Tool maker

-Some small/med. size companies (e.g. FST, Auros tech...) are developing EUV-related tools and EUV pellicles in collaboration with customers and academia

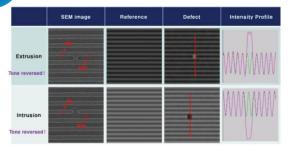
EUVL insertion scenario

Samsung

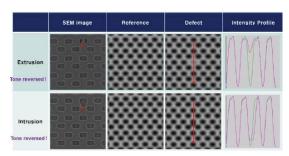
Plan to insert EUVL for 1X nm node DRAM in 2016

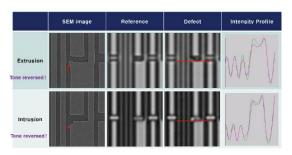
- Discussion with ASML for EUVL mass production

Coherent scattering microscopy (CSM) was installed for mask inspection - Using Zone plate for precise focus and accurate inspection


SK hynix

Plan to insert EUVL for 2Z or 1X nm node DRAM in 2015 ~ 2017 - The power of EUV source for mass production is a critical issue



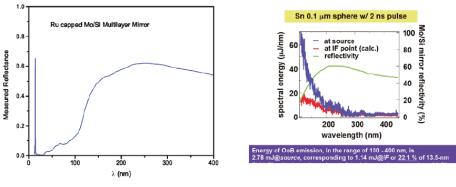

Samsung (EUV mask inspection for sub-20nm device)

Inspection image with bridge(extrusion) and cut(intrusion) defect in 1:1 L/S of 2Xnm HP node

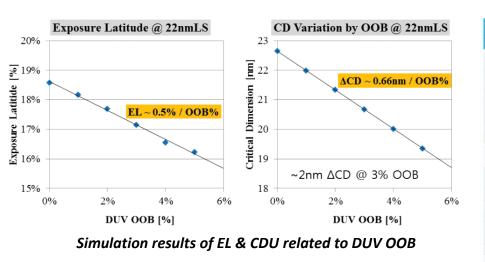
Inspection image with extrusion and intrusion defect in dense CNT of 2Xnm HP

Inspection image with extrusion and intrusion defect in isolated pattern of 2Xnm HP

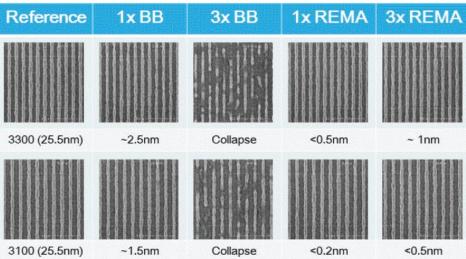
2Xnm	1	2	3	4	5	6	7	8	9	10	11	12	
	Printability								54nm	45.3mn	34.2nm	27.4nm	
Extrusion	Die to Die	100%	100%	100%	100%	100%	100%	100%	100%	100%	72%	16%	
	Die to DB	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	40%	
	Printability								49.8nm	39.2nm	34.1nm	22.6nm	
Intrusion	Die to Die	100%	100%	100%	100%	100%	100%	100%	100%	100%	92%		
			4.0004	100%	100%	100%	100%	100%	100%	100%	100%	44%	
	Die to DB	100%	100%	100%	100%	20075	20070	10070					
	Die to DB	100%	100%	100%	100%	20075	20070	20070					
2Xnm	HP CNT	100%	2	3	4	5	6	7	8	9	10	11	
	HP CNT Printability	1	2	3	4	5	6	7	8 54.1nm	9 42.4nm	38.3nm	36.9nm	
2Xnm Extrusion	HP CNT								8	9			
	HP CNT Printability	1	2	3	4	5	6	7	8 54.1nm	9 42.4nm	38.3nm	36.9nm	12 25.2n 36%
	HP CNT Printability Die to Die	1 100%	2 100%	3 100%	4	5 100%	6 100%	7 100%	8 54.1nm 100%	9 42.4nm 100%	38.3nm 100%	36.9nm 36%	25.2n
	HP CNT Printability Die to Die Die to DB	1 100%	2 100%	3 100%	4	5 100%	6 100%	7 100%	8 54.1nm 100% 100%	9 42.4nm 100% 100%	38.3nm 100% 100%	36.9nm 36% 100%	25.2n 36%


2Xnm HP I	iso. Pattern	1	2	3	4	5	6	7	8	9	10	11	12
	Printability								44.8nm	43.2nm	40.8nm	37.1nm	
Extrusion	Die to Die	100%	100%	100%	100%	100%	100%	100%	96%	92%	92%	80%	
	Die to DB	100%	100%	100%	100%	100%	100%	100%	100%	100%	96%	80%	
Intrusion	Printability								49.6nm	44nm	38.4nm	34.6nm	
	Die to Die	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	60%	
	Die to DB	100%	100%	100%	100%	100%	100%	100%	100%	16%			

Sensit	ivity	L/S	CNT	Iso. Pattern
Extrusion	Die to Die	Bad	Bad	Good
Exclusion	Die to DB	Good	Bad	Good
Internation	Die to Die	Good	Good	Good
Intrusion	Die to DB	Good	Good	Bad
Tone rev	versal	Reversed	Reversed	Reversed
Readiness		ОК	Insufficient	OK


Die-to-DB inspection has slightly better detectability than Die-to-Die. Unlike general optical mask inspection, specific optimal inspection condition exists at a given set of illumination condition, pattern size, and blank type for EUV's

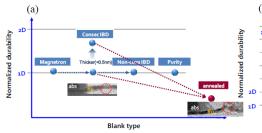
Samsung (DUV OoB suppression techniques)

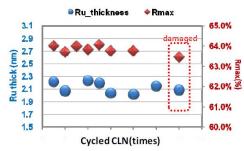


Reflectivity of EUV multilayer and OOB

		Method	Pros.	Cons.
ę	System	- DUV Membrane Filter - Optics grating	- Full field shielding of OoB	- EUV photon Loss
N	Material	- OoB absorbing material (Top Coat)	 Full field shielding of OoB Resist outgas suppression 	 EUV Photon Loss Extra processing time/cost
	Mask	- ML etched BB	- BB field OOB and EUV flare suppression	 Mask Registration Extra mask processing time/cost

NXE3300 results @ NXE3100 hybrid Source

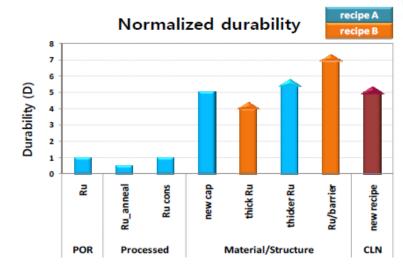



DUV OOB in EUV system is big roadblock and it should be cleared to implement EUV lithography technology for mass production. New experiment method to verify NXE3100 and NXE3300 REMA OOB effect was mentioned and analyzed each effect.



2

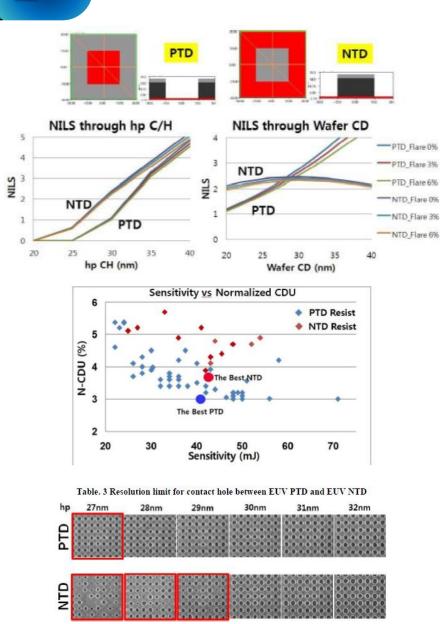
Samsung (Durability of EUV masks)

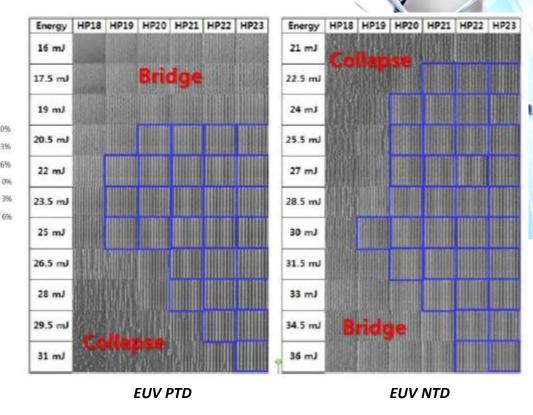

[TEM before cycled cleaning]

Ru

	Durability	SEM(BF C.CLN)	SEM(AFT C.CLN)	TEM(AFT C.CLN)
New material	5D	ini	5D	5D abs Outda Ru-alloy
Barrier below Ru	>7D	ini	7D	abs
Thicker Ru	>5.5D	ini	5.5D	5.5D abs Ru

Check list	POR	New Capping	Thick Ru	Ru /w barrier
Durability /w IUV CLN	1D	5D	5.5D	7D
Thickness loss	<0.3nm/1D	<0.1nm/1D	<0.15nm/1D	0.03nm/1D
TEM analysis	damaged	Bad adhesion bt. Abs and capping	OK	ОК
Etch stopper	OK	OK	OK	OK
Repair-ability	ок	Repair margin is reduced by 50%	OK	ОК
Abs. blank inspection	~XX @100nm	~X @100nm	~XX @100nm	Use etch chamber w/o defect control
Defect issue	ОК	Need to check	Need to check	Need to check

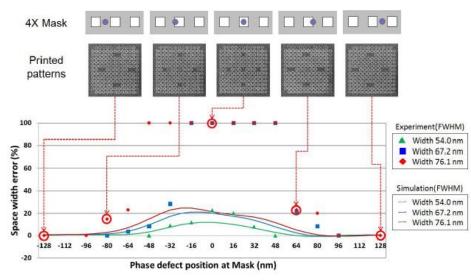

Ru damage mechanism regarding IUV cleaning is verified by evaluating capping with various conditions. In the beginning of Ru damage procedure, oxygen is absorbed into Ru under the UV radiation increases, resulting in the formation of SiO2 layer. Then, the SiO2 beneath Ru causes Ru film stress causing volume expansion and weak adhesion. Finally, the peeling is occurred by physical force like mega-sonic.

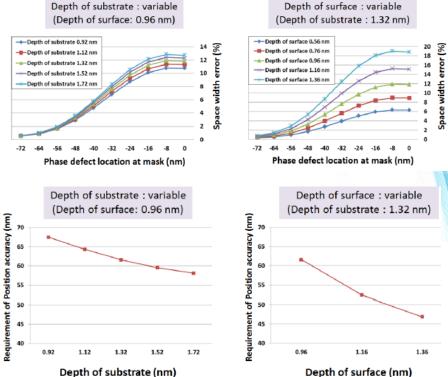


June 23-27, 2014 Int'l Workshop on EUVL, Maui, Hawaii

SK hynix (patterning performance of PTD and NTD)

DRAM has shrunk to 1Xnm in R&D area and at the same time patterning technology has become one of the major challenges, but cost of DPT/SADP and EUV source power issues are pushing development of high sensitive resist and related process. The major motivation of EUV NTD is higher image contrast and swelling free property compared to EUV PTD. Currently same resolution limit and wider process window was demonstrated on EUV NTD L/S but overall performance of EUV NTD contact hole is still behind EUV PTD.

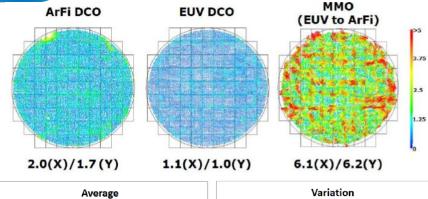



2

SK hynix (phase defect effect analysis)

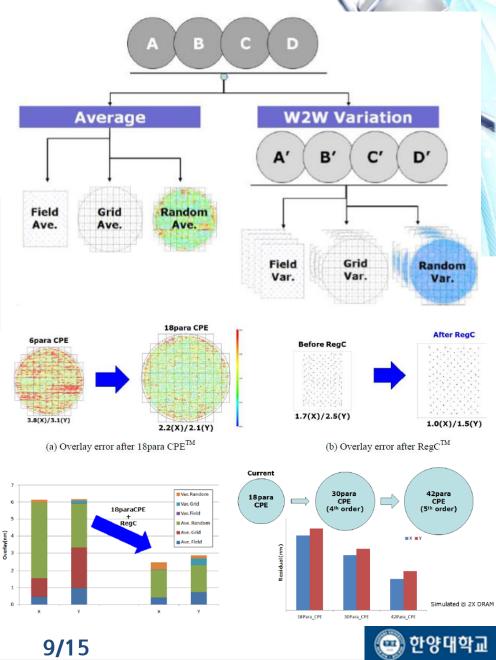
Resist Mask					
patterns (Phase defect)	Lx ~ - <u>hp</u>	Lx ~ - <u>hp</u> /2	Lx ~ 0	Lx ~ <u>hp</u> /2	Lx ~ <u>hp</u>
<u>ML surface</u> W=54 nm D=0.96 nm					
<u>ML surface</u> W=67.2 nm D=1.45 nm					
<u>ML surface</u> W=76.1 nm D=1.70 nm					

Wafer SEM image of 32 nm CH patterns printed from a test mask for various location Lx of the pit phase defects with three different sizes


Analysis of phase defect effect on CH

Clear defect size dependence and location dependence on CD errors were verified and the effectiveness of the phase defect mitigation by covering the defect with absorber patterns was experimentally confirmed and it was verified that the requirement of position accuracy for blank defect mitigation was related not only width but also depth.

Measured space error of 32nm CH patterns


SK hynix (EUV overlay strategy for improving MMO)

MMO performance is analyzed by breaking down of overlay results into average & W2W variation terms in the aspects of field, grid and random error.

Rank	Ter	ms	Root cause	Solution
#1		Random		More precise tool matching 18para CPE
#2	Average	Grid	Mix-match	СРЕ
#3		Field		RegC
#4	Variation	Random	ArFi machine	ArFi Machine Improvement

June 23-27, 2014 Int'l Workshop on EUVL, Maui, Hawaii

Kumho Petrochemical (acid amplifier in EUV PR)

Table 1: Diffusion length(Ld) and coefficient(D) of blending type PAG

Table 2: Diffusion length(Ld) and coefficient(D) of Polymer bound PAG

Í		R	CF_3	(CF ₂) ₃ CF ₃	(CF ₂) ₇ CF ₃	A-cyclo hexyl	A-Adaman tane			R	CH_3	t-Bu	cyclohexyl	long chain (C# >10)
	 	Ld	(nm) 155	79	48	88	59			Ld(nm)	18	17	23	5
	 0	² D	200	52	19	64	29			D	2.6	2.4	4.3	0.2
	~"	* S	OB, PEB : 1	10°C/60sec *	Developm	ent time :	40sec			* SOB, PE	B : 110°	C/60sec * Devel	opment tim	e : 40sec
		8								Best		8256225191	811 1218	SISISISIS
PAG	Resol.	Еор		CD-SEMin	mage		Remark	EUV					Tanka and a second	
									40mJ/cm ²	26mJ/cm ²		34mJ/cm ²	36m	J/cm ²
Blending type	40nm	13.3mJ					Severe bridge	e-beam	And a second sec				Best	
									500uC/cm ²	400uC/cm ²		300uC/cm ²	120u0	C/cm ²
PBP	40nm	28.2mJ							- <u>)</u> .	+		→ √ .		1
										\bigcirc		129		~~

Higher sensitivity

The sensitivity comparison between EUV light and e-beam with acid labile group variation

LWR is related to acid diffusion of the photoacid generator

The sensitivity comparison between blending type PAG and PBP

in EUV light condition

PBP type resist is decided as polymer platform because PBP type resist shows shorter acid diffusion length than blending type resist Acid amplifier, highly sensitive acid labile group in polymer and sensitizer are used for methods to improve sensitivity and LWR

Kumho Petrochemical (EUV PR development)

Solvent	PGMEA	Ethyl lactate (EL)	PGMEA/PGME 7/3	PGMEA/EL 7/3
Boiling point (°C)	145	154	145/118	145/154
Film thickness after soft bake	588	617	591	612
Estimated Eop (mJ/cm ²)	71.5	> 110	91	> 110
Top down SEM image		ra enstituita <u>entitae</u>	FA JOLAVILVIJU	55. ···
Resolution	33nm	17nm	30.5nm	19nm
Dose	71.5mJ	74.8mJ	74.8mJ	71.5mJ

The effect of resist solvent

SOB/PEB (100 °C / 90 °C , 60sec), film thickness (60nm/1500rpm) 33nm hp C/H @ BMET (0.30 NA, Quad)

Resolution	32nm	30nm	29nm	28nm
low Ea monomer monomer-1 high Ea m	onomer ner-2			
low Ea monomer monomer-1 high Ea m	soonmer	24mD		
low Ea monomer monomer-1 high Ea m				

Methacrylate vs acrylate

SOB/PEB (100 °C/90 °C, 60sec), film thickness (60nm/1500rpm)

30nm hp C/H @ AMET (0.30 NA, Quad)

	Resist A	Resist B	Resist C	Resist D	Resist E
polymer concept	Reference	Mw + 4000	Mw - 3000	B + C	Low Pd polymer
Estimated Eop (mJ/cm ²)	72.3	71.9	60.2	69.5	70.8
Top down SEM image			en. Maarstaar		
Resolution	31.5nm	32.5nm	28.8nm	31.9nm	31.6nm
Dose	71.5mJ	71.5mJ	58.3mJ	68.2mJ	68.2mJ
Dose	/1.500	/1.500	58.510	08.21113	08.2110

The effect of Polymer properties

SOB/PEB (100 °C/90 °C, 60sec), film thickness (60nm/1500rpm)

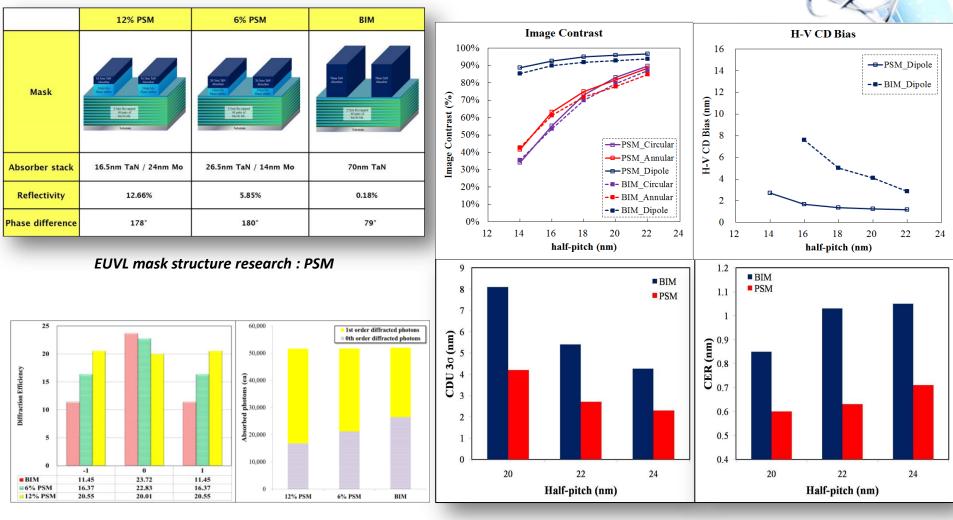
33nm hp C/H @ BMET (0.30 NA, Quad)

	Resist A	Resist E	Resist F
PGA:B:C	2:3:5	1:4:5	0:5:5
Feed ratio			
Top down SEM image			
Resolution	32nm	32nm	32nm
Sensitivity	47mJ	38mJ	36mJ
CDU	9	9	٨

Variation of PG ratio

SOB/PEB (100 °C/90 °C, 60sec), film thickness (60nm/1500rpm)

32nm hp C/H @ AMET (0.30 NA, Quad)

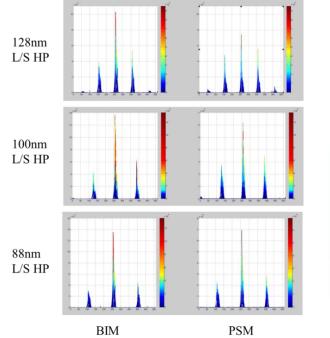

They were considered on polymer blending PAG resist by varying polymer Mw, Pd and PG feed ratio. Polymer for EUV C/H resist requires Mw above certain levels to keep the mechanical strength and low Pd to improve CDU. Moreover, EUV C/H resist were designed by introducing the combination system of high / low Ea PG and of methacrylate / acrylate to overcome RLS tradeoff.

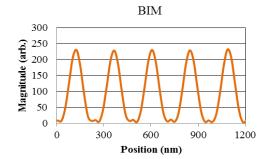
3

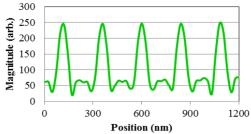
Hayang University (Stochastic simulation of PSM)

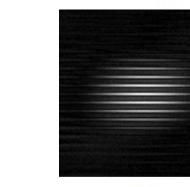
Optical performances of PSM

Improved H-V CD Bias, CDU, LER and LWR of the PSM

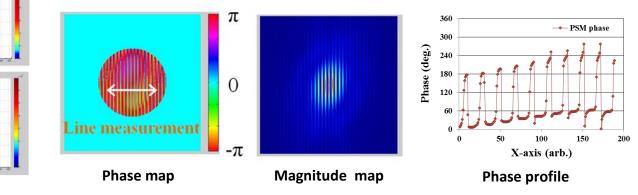



Hayang University (Mask Inspection with CSM)

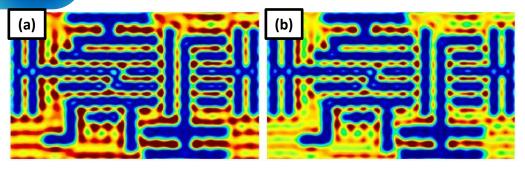


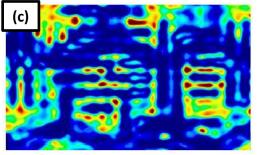


Coherent Scattering Microscopy

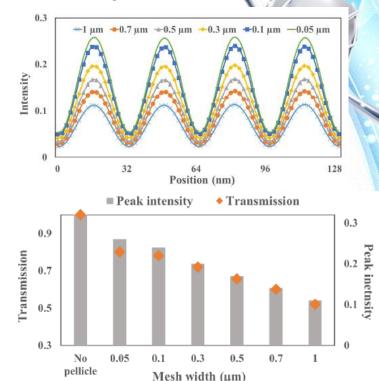


Inspection of fabricated EUV masks; binary intensity mask (BIM) and phase shift mask (PSM)

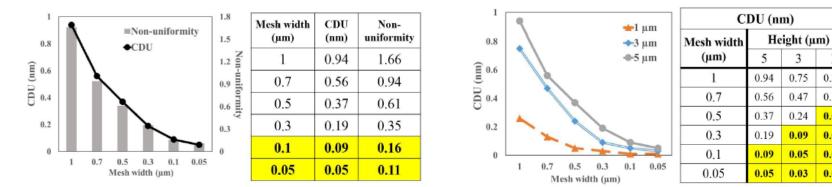



June 23-27, 2014 Int'l Workshop on EUVL, Maui, Hawaii

13/15


Binary

Hayang University (EUV pellicle simulation)



Aerial images of 20nm line width with pellicle structures ; (a) nonpellicled (b) mesh-less 50nm Si film (c) 50nm Si film with 1.2 μm pitch, 100 nm mesh width and 1 μm height mesh support

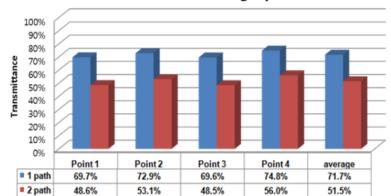
Intensity variation with various mesh widths

CDU variation caused by mesh width change and intensity difference

0.26

0.13

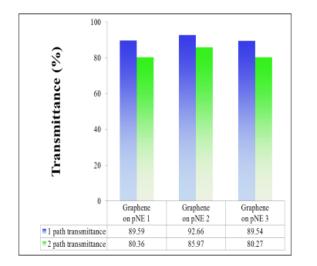
0.05

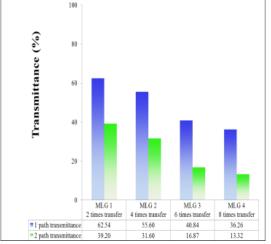

0.03

0.02

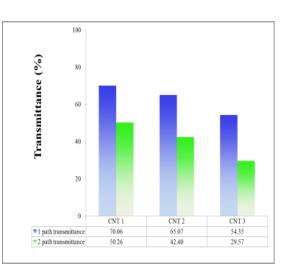
0.01

Hayang University (EUV pellicle fabrication)


Si with mechnically strong material (toughness, yield strength..)


EUV transmittance of graphene

Absorbance of graphene


- 0.2% / monolayer at EUV
- 2.3% / monolayer at visible

<monolayer graphene + pNE>

<multilayer graphene>

<carbon nanotube>

June 23-27, 2014 Int'l Workshop on EUVL, Maui, Hawaii

Thank you

for your attention