Direct Visualization of the Impacts of EUV Mask Roughness

Patrick Naulleau, Suchit Bhattaria, Rick Chao, Rene Claus, Kenneth Goldberg, Frank Goodwin, Eric Gullikson, Donggun Lee, Andy Neureuther, and Jong-Ju Park

Berkeley Lab Center for X-ray Optics, UC Berkeley, SEMATECH, and Samsung

EUVL Workshop Maui HI, June 26, 2014

Band-limited imaging and propagation transforms phase roughness to intensity speckle

In focus $\sigma = 0.5$

Contrast = 0.9%

Band-limited imaging and propagation transforms phase roughness to intensity speckle

50-nm defocus $\sigma = 0.5$

Contrast = 6%

Multilayer speckle directly observed with EUV microscope

Images from SEMATECH Berkeley AIT, courtesy of Ken Goldberg, LBNL

P. Naulleau | PNaulleau@lbl.gov

Focus plays dominant role in roughness induced LWR

75-pm roughness, 0.33 NA, 0.7 Sigma, 22-nm HP

Focus plays dominant role in roughness induced LWR

75-pm roughness, 0.33 NA, 0.7 Sigma, 22-nm HP

Focus plays dominant role in roughness induced LWR

75-pm roughness, 0.33 NA, 0.7 Sigma, 22-nm HP

Measuring multilayer roughness

AFM blind to true EUV roughness

P. Naulleau | PNaulleau@lbl.gov

AFM blind to true EUV roughness

S. George et al., Proc. SPIE **7969**, 79690E (2011)

Scatterometry measures true EUV roughness

Demonstration 1: Measure multilayer speckle with SHARP

Source: Synchrotron

Optics: Mirrors & Zoneplate-lenses

4×NA: 0.25–0.625

σ: Programmable

Nav: Full-mask xy

Speed: ~8 series/hr

Good fit between SHARP and modeling

Demonstration 2: Measure multilayerinduced LWR with Samsung SERM tool

<u>Scanning EUV Reticle Microscope</u>

Outline of the tool development

- The zone plate optics was designed and fabricated by LBNL.
- The high harmonic source was developed by Samsung and FST using COHERENT Ti:Sapphire femtosecond laser(λ = 800nm, pulse width= 46fs) and the whole system was integrated by Samsung.

Correlation method used to extract mask roughness in presence of noise

Total Maskinduced LWR 1.60 nm Pattern LWR 1.48 nm Multilayer LWR 0.62 nm Simulated Multlayer LWR 0.60 nm

 $LWR_{msk} = R \times LWR_{meas}^*$

* Appl. Opt. 48, 3302-3307 (2009)

Impact on inspection

Patterned mask inspection

		CDU Requirement				~•••••••••••••••••••••••••••••••••••••				
RSR (pm)	Speckle LWR (nm)	10%		20%				oqui		
20	0.16	2.81E-08		4.00E-63						
30	0.24	2.77E-04		2.65E-47	,					
44	0.35	7.39E+00		7.93E-30		Brightfield blank				
56	0.45	4.37E+03		6.15E-19		inspection				
69	0.55	3.40E		Printable defect height (nm)						
81	0.65	6.89E	RSR (pm)	0.3	0.4	0.5	0.6			
94	0.75	5.83E	50	6.59E-05	3.44E-17	6.40E-33	4.16E-52			
106	0.85	2.77E [.]	55	3.74E-02	2.52E-12	2.42E-25	3.26E-41			
119	0.95	8.90E	60	4.71E+00	1.28E-08	1.43E-19	6.40E-33	_	Darkfield	
			65	2.05E+02	9.92E-06	4.47E-15	1.84E-26		blook	
			70	4.15E+03	1.96E-03	1.67E-11	2.48E-21	_	DIANK	
			80	3.48E+05	4.71E+00	2.96E-06 8.51E-14		ins	inspection	
			90	7.44E+06			Target defec	t height (nm)	eight (nm)	
			100	6.//E+0/	RSR (pm)	0.4	0.6	0.8	1.0	
			110	3.52E+08	50	5.28E+06	8.00E-08	2.22E-44	3.90E-121	
			120	2 27F±09	60	3.79E+08	5.72E+01	1.01E-16	7.75E-54	
			150	3.372105	70	2.63E+09	4.10E+05	8.39E-05	6.37E-25	
					80	7.24E+09	3.37E+07	5.72E+01	7.71E-11	
					90	1.30E+10	3.79E+08	7.92E+04	2.64E-03	
					100	1.88E+10	1.59E+09	5.28E+06	5.72E+01	
					110	2.40E+10	3.95E+09	7.04E+07	2.54E+04	
					120	2.84E+10	7.24E+09	3.79E+08	1.26E+06	

Summary

- Roughness has significant impact on inspection
- Actinic characterization likely required
- Model verified using two different actinic microscopes
- System modeling points to EUV roughness requirements close to 50 pm

THE CENTER FOR X-RAY OPTICS

