

### One Hundred Watt Class EUV Source Development for HVM Lithography

### 2014 EUVSource Workshop @ UCD, Dublin Ireland

Hakaru Mizoguchi, Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Georg Soumagne, Tsuyoshi Yamada, Taku Yamazaki , Shinji Okazaki and Takashi Saitou

Gigaphoton Inc. Hiratsuka facility: 3-25-1 Shinomiya Hiratsuka Kanagawa, 254-8567, JAPAN

**JIGAPHOTON** 

Copyright © 2014 Gigaphoton Inc.

DOC#

|        | • | Introduction<br>LPP Light Source Concept and Component technology<br>» Droplet Technology<br>» Pre-pulse Technology<br>» Driver CO2 laser<br>» Debris Mitigation Technology<br>» Collector Mirror and IR Reduction Technology |
|--------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AGENDA | • | Gigaphoton's High Power LPP Light Source System<br>Development<br>» Output Power Update<br>» Potential performance                                                                                                            |
|        | • | Power-up Scenarios of HVM EUV Light Sources<br>» Construction of Pilot #1                                                                                                                                                     |
|        | • | Summary                                                                                                                                                                                                                       |

# **Technical Barrier of EUV Lithography**



### History of LPP Source Development (1)



Copyright © 2014 Gigaphoton Inc. All Rights Reserved.

### **History of LPP Source Development (2)**

Liquid Xe jet target experiment with YAG laser driver (2004)



### History of LPP Source Development (3)

LPP EUV light generation test (2004) with Xe Jet + YAG laser system



Copyright © 2014 Gigaphoton Inc. All Rights Reserved.

### **History of LPP Source Development (4)**



Copyright © 2014 Gigaphoton Inc. All Rights Reserved.

### Gigaphoton's LPP Light Source Concept (2006)

- High ionization rate and CE EUV Sn plasma generated by CO<sub>2</sub> and solid laser dual shooting
- Hybrid CO<sub>2</sub> laser system with short pulse high repetition rate oscillator and commercial cw-amplifiers
- 3. Accurate shooting control with droplet and laser beam control
- 4. Sn debris mitigation with a super conductive magnetic field
- High efficient out of band light reduction with grating structured C1 mirror



|        | <ul> <li>Introduction</li> <li>LPP Light Source Concept and Component technology         <ul> <li>Droplet Technology</li> <li>Pre-pulse Technology</li> <li>Driver CO2 laser</li> <li>Debris Mitigation Technology</li> <li>Collector Mirror and IR Reduction Technology</li> </ul> </li> </ul> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AGENDA | <ul> <li>Gigaphoton's High Power LPP Light Source System</li> <li>Development         <ul> <li>Output Power Update</li> <li>Potential performance</li> </ul> </li> </ul>                                                                                                                        |
|        | <ul> <li>Power-up Scenarios of HVM EUV Light Sources         <ul> <li>Construction of Pilot #1</li> </ul> </li> <li>Summary</li> </ul>                                                                                                                                                          |

# Droplet Technology (1)

- The Droplet Generator is one of the key technologies for achieving HVM level EUV light sources
- Requirement for droplet generator
  - » Size of droplet is  $20 \mu m$ 
    - Smaller droplet is better
      - Debris mitigation
      - Longer lifetime of droplet generator
    - Technical barrier is higher
      - Clogging due to smaller nozzle
  - » Stability is  $\pm 20 \mu m$ 
    - Short and long term stability is necessarily to achieve stable dose control



# **Droplet Technology (2)**

- 100 kHz, 20 μm droplet generation was confirmed
- Short & middle term stability was confirmed
  - » Good margin compare to the target  $\pm 20~\mu\text{m}$
  - » No clogging / stability change even with cool down & re-start





Copyright ©2014 Gigaphoton Inc. All Rights Reserved.

# **Pre-Pulse Technology (1)**

- Based on basic physical consideration and experiments, Gigaphoton has chosen to adopt the pre-pulse technology since 2009
- In 2012 Gigaphoton discovered that shortening the • pre-pulses duration dramatically enhance the conversion efficiency in low repetition rate (2Hz).
- We are achieving this high Ce operation • under high repetition rate, high duty cycle operation condition.

#### CO2 pulse enegy vs. EUV-CE



5.0

Copyright © 2014 Gigaphoton Inc. All Rights Reserved.

# Pre-Pulse Technology (2)

Fragment distribution measurement and modeling

- The mist shape of a picosecond prepulse is different from the nanosecond pre-pulse (ps = dome vs. Ns=thin disk or ring)
- Fragment distribution could be a key factor for high CE





Copyright © 2014 Gigaphoton Inc. All Rights Reserved.

# Pre-Pulse Technology (3)

Experiment shows picosecond pre-pulse dramatically enhances ionization rate and CE



# **CO<sub>2</sub>** laser driver Technology (2)

### CO<sub>2</sub> laser driver system test result





# Debris Mitigation Technology (1)

#### Gas mitigation method







Proc. of SPIE Vol. 7636 763639 (2010)

# **Debris Mitigation Technology (2)**

Issue with previous gas mitigation techniques





# **Debris Mitigation Technology (3)**

Gigaphoton's Magnetic Debris Mitigation concept



# **Debris Mitigation Technology (4)**

Gigaphoton's unique magnetic field + gas etching technology

- The collector mirror lifetime (i.e. debris mitigation technology) is one of the key items for reducing cost of consumables for HVM
- Gigaphoton's unique technology for debris mitigation:
  - » Magnetic field to catch Sn ion/atom
  - » H\* gas to etch out Sn atom



Copyright © 2014 Gigaphoton Inc. All Rights Reserved.

19

### **Debris Mitigation Technology (5)**

### **EUV Light Source for Debris Mitigation Testing**



Mounting the collector mirror



After 27Mpulse/3days with P(I/F)=10W@20kHz

Copyright © 2014 Gigaphoton Inc. All Rights Reserved.

20

## **Debris Mitigation Technology (6)**

### **Debris mitigation: SEM image**



# Debris Mitigation Technology (7)

### **Analysis: Tin Ion Catcher**

- Tin depositions re-introduced from the ion catcher accumulates on the collector mirror
- We are improving the tin ion catcher mechanism to address this issue



**Tim Deposition Simulation** 



Actual Tin Deposited on Collector

# **Collector Mirror Technology (1)**

### Collector Mirror progress

#### **IR Reduction Technology is Advancing**



Gigaphoton is developing IR reduction mirror in co-operation with multiple mirror suppliers.

# **Collector Mirror Technology (2)**

### **Collector mirror status**

• Collector mirror with grating structure (V5 type) was successfully developed. Efficiency from plasma to clean would be improved from 21.6% to 26.7%.



Copyright © 2014 Gigaphoton Inc. All Rights Reserved.

| AGENDA | <ul> <li>Introduction</li> <li>LPP Light Source Concept and Component technology         <ul> <li>Droplet Technology</li> <li>Pre-pulse Technology</li> <li>Driver CO2 laser</li> <li>Debris Mitigation Technology</li> <li>Collector Mirror and IR Reduction Technology</li> </ul> </li> </ul> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | <ul> <li>Gigaphoton's High Power LPP Light Source System</li> <li>Development         <ul> <li>Output Power Update</li> <li>Potential performance</li> </ul> </li> </ul>                                                                                                                        |
|        | <ul> <li>Power-up Scenarios of HVM EUV Light Sources         <ul> <li>Construction of Pilot #1</li> </ul> </li> <li>Summary</li> </ul>                                                                                                                                                          |

### **High Power EUV Light Source of Gigaphoton**

• Proto type of high power EUV light sources are in operation

Proto 1 Exposure & Mitigation test



Proto 2 High power Experiment



Copyright © 2014 Gigaphoton Inc. All Rights Reserved.

# **Proto Systems in Operation**

Target System Specifications

| Operational Specification |                   | Proto #1                                       | Proto #2                      | Customer Beta Unit            |
|---------------------------|-------------------|------------------------------------------------|-------------------------------|-------------------------------|
|                           | EUV Power         | 25 W                                           | 100 W                         | 250 W                         |
|                           | CE                | 3%                                             | 4%                            | 4%                            |
|                           | Pulse rate        | 100 kHz                                        | 100 kHz                       | 100 kHz                       |
| Target<br>Performance     | Output angle      | Horizontal                                     | 62° upper<br>(matched to NXE) | 62° upper<br>(matched to NXE) |
|                           | Availability      | 1 week operation                               | 1 week operation              | > 75%                         |
|                           | Droplet generator | 20 – 25 μm                                     | 20 μm                         | < 20 µm                       |
| Technology                | CO2 laser         | > 8 kW                                         | > 12 kW                       | 25 kW                         |
|                           | Pre-pulse laser   | picosecond                                     | picosecond                    | picosecond                    |
|                           | Debris mitigation | validation of magnetic<br>mitigation in system | 10 days                       | 15 days                       |

## **Driver Laser System Configuration**

- Proto#1
  - » 5kW CO2 power at 100kHz by 2 MA CO2 laser system.
- Proto#2
  - » 17kW CO2 power at 100kHz by 3 MA CO2 laser + Mitsubishi pre-Amplifier system.
- Pilot#1 (Designing)
  - » 25kW CO2 power at 100kHz by using Mitsubishi amplifier system.



28

Copyright © 2014 Gigaphoton Inc. All Rights Reserved.

### 20kHz, 50% D/C: EUV Power Operation Data

• 42W in burst, 21W average (42W x 50%) output power for 3hours (110Mpls)



| Rep.rate           | 20kHz             |
|--------------------|-------------------|
| EUV energy (ave.)  | 9.79mJ            |
| IF power @ clean   | 42W               |
| CO2 energy(ave.)   | 273mJ             |
| CE                 | 3.6%              |
| EUV stability (3s) | 14%               |
| Pulse number       | 110Mpls           |
| DLG                | CJ1551-3          |
| Droplet.diameter   | 25um              |
| Droplet.spacing    | 500um             |
| DL catcher         | Туре С            |
| lon catcher        | Type D<br>(L=200) |

Copyright © 2014 Gigaphoton Inc. All Rights Reserved.

### 60kHz, 70% D/C: EUV power operation data

- 118W output with 3.7%CE, 60kHz, 70% duty cycle (Clean power in burst)
- 83W (=118W x 70%) average power output.



Copyright © 2014 Gigaphoton Inc. All Rights Reserved.

### **Potential: Higher Duty Cycle Operation**



Copyright © 2014 Gigaphoton Inc. All Rights Reserved.

### **Potential: Higher Repetition Rate Operation**



Copyright © 2014 Gigaphoton Inc. All Rights Reserved.

### **EUV** average power improvement and potential

| -         |                                    |          | -        |          |             |             |
|-----------|------------------------------------|----------|----------|----------|-------------|-------------|
|           |                                    | 2014 May | 2014 Jun | 2014 Sep | 2014 Oct    | Potential   |
|           |                                    | Proto#2  | Proto#2  | Proto#2  | Proto#2     | performance |
| EUV       | EUV average<br>power               | 3W       | 46W      | 21W      | 83W         | (112W)      |
|           | EUV clean power                    | 60W      | 92W      | 42W      | 118W        | (140W)      |
|           | Duty cycle                         | 5%       | 50%      | 50%      | <b>70</b> % | 80%         |
|           | Repetition rate                    | 50kHz    | 50kHz    | 20kHz    | 60kHz       | 70kHz       |
|           | CE                                 | 3.7%     | 4.2%     | 3.6%     | 3.7%        | 3.7%        |
|           | Operation time                     | -        | -        | 3hour    | 10min       |             |
| System    | Collector                          | V3       | V3       | V3       | V5          | V5          |
| parameter | Efficiency from<br>plasma to clean | 21.6%    | 21.6%    | 21.6%    | 31.6%       | 31.6%       |
|           | H2                                 | 7Pa      | 7Pa      | 7Pa      | 11Pa        | 11Pa        |
|           | CO2 power                          | 7.6kW    | 10kW     | 5.4kW    | 10.2kW      | 12.0kW      |

Note: C1 mirror was changed to V5 from V3.

Remark: EUV average power = EUV clean power x duty cycle , open loop F/B Out of band DUV filter condition was revised sinse Oct.2014 data

| AGENDA | <ul> <li>Introduction</li> <li>LPP Light Source Concept and Component technology         <ul> <li>Droplet Technology</li> <li>Pre-pulse Technology</li> <li>Driver CO2 laser</li> <li>Debris Mitigation Technology</li> <li>Collector Mirror and IR Reduction Technology</li> </ul> </li> </ul> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | <ul> <li>Gigaphoton's High Power LPP Light Source System</li> <li>Development         <ul> <li>Output Power Update</li> <li>Potential performance</li> </ul> </li> </ul>                                                                                                                        |
|        | <ul> <li>Power-up Scenarios of HVM EUV Light Sources         <ul> <li>Construction of Pilot #1</li> </ul> </li> <li>Summary</li> </ul>                                                                                                                                                          |

### **EUV Power achievement and Target**



Copyright © 2014 Gigaphoton Inc. All Rights Reserved.

35

### **Power-up Scenario of Driver Laser System (1)**

Next target is 12 kW by upgrading the pre-amplifier (installation is on going now)



## **Power-up Scenario of HVM Sources**

We are achieving **solid** and **steady** progress towards realizing our HVM EUV source

|                                 |                                |                                |                                     | Next larget                     | Pilot # I                         |
|---------------------------------|--------------------------------|--------------------------------|-------------------------------------|---------------------------------|-----------------------------------|
| EUV clean power                 | 25W                            | 43W                            | 118W                                | 150W                            | 250W                              |
| Target                          | 2013, Q4                       | 2014, Q1                       | 2014,Q3                             | 2014,Q4                         | 2015,Q2                           |
| CO <sub>2</sub> power at plasma | 5kW                            | 8kW                            | 10.2kW                              | >14kW                           | > 20kW                            |
| CE                              | 2.5%                           | 3%                             | <b>3.7</b> %                        | > <b>4.2</b> %                  | <b>&gt; 4.5</b> %                 |
| Plasma to IF clean              | 21.7%                          | 21.7%                          | <b>31.6</b> %                       | <b>31.6</b> %                   | 35.1%                             |
| CO <sub>2</sub> laser           | 2 main amp.<br>system: Proto#1 | 3 main amp.<br>system: Proto#2 | Mitsubishi<br>pre. amp.:<br>Proto#2 | Mitsubishi pre.<br>amp :Proto#2 | Mitsubishi<br>main amp.<br>system |
| Collector mirror                | Normal Type                    | Normal Type                    | Grating Type                        | Grating Type                    | Grating Type                      |

| AGENDA | <ul> <li>Introduction</li> <li>LPP Light Source Concept and Component technology         <ul> <li>Droplet Technology</li> <li>Pre-pulse Technology</li> <li>Driver CO2 laser</li> <li>Debris Mitigation Technology</li> <li>Collector Mirror and IR Reduction Technology</li> </ul> </li> </ul> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | <ul> <li>Gigaphoton's High Power LPP Light Source System</li> <li>Development         <ul> <li>Output Power Update</li> <li>Potential performance</li> </ul> </li> </ul>                                                                                                                        |
|        | <ul> <li>Power-up Scenarios of HVM EUV Light Sources</li> <li>» Construction of Pilot #1</li> </ul>                                                                                                                                                                                             |
|        | • Summary                                                                                                                                                                                                                                                                                       |

## Summary

- Progress of component technology;
  - » Improvement of debris mitigation is reported; 4 hrs. continuous operation, deposition sampled at mirror center area was less than 0.006nm/MPls.
  - » Improvement data of IR reduction corrector mirror is reported
  - » Driver CO2 laser power at plasma point is improved from 10kW to 17kW
- Verified high output EUV light on Proto#2 unit
  - » New Data: 118W (CE3.7%) x 70%duty, 83W average power x10min
  - » and 42Wx3hours, clean output at IF under 50%Duty<sup>\*</sup> were reported.
  - » Next step is to enable higher duty cycle and higher repetition rate operations. Potential data is reported.
- Design of the development pilot#1 is reported.

\* Percentage of EUV emission during operation

## **Acknowledgements**

#### Thanks for your co-operation:

Mitsubishi electric CO<sub>2</sub> laser amp. develop. team: Dr. Yoichi Tanino\*, Dr. Junichi Nishimae, Dr. Shuichi Fujikawa and others.

\* The authors would like to express their deepest condolences to the family of Dr. Yoichi Tanino who suddenly passed away on February 1<sup>st</sup>, 2014. We are all indebted to his incredible achievements in CO<sub>2</sub> amplifier development. He will be missed very much.

#### Collector mirror suppliers - especially Rigaku for providing us with useful data

Dr. Akira Endo : HiLase Project (Prague) and Prof. Masakazu Washio and others in Waseda University

Dr. Kentaro Tomita, Prof. Kiichiro Uchino and others in Kyushu University

Dr. Jun Sunahara, Dr. Katsunori Nishihara, Prof. Hiroaki Nishimura, and others in Osaka University

#### Thanks for you funding:

EUV source development funding is partially support by **NEDO in JAPAN** 

#### Thanks to my colleagues:

**EUV development team of Gigaphoton;** Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Tsuyoshi Yamada, Taku Yamazaki, Takashi Saitou and other engineers.

