

Modeling of target deformations due to pre-pulse with debris analysis

I.Yu. Vichev^{1,3}, V.G. Novikov^{1,3}, M.M. Basko^{1,3}, V.V. Ivanov^{2,3}, V.V. Medvedev^{2,3}, A.M. Yakunin⁴, A. Bratchenia⁴, K. Feenstra⁴

¹ RnD-ISAN, Troitsk, 142190 Russia, ² Institute of Spectroscopy RAS, Troitsk, 142090 Russia, ³ Keldysh Institute of Applied Mathematics RAS, Moscow, 125047 Russia, ⁴ ASML, Veldhoven, Netherlands

Time dependence

60

49

23

17

50

20

Power balance from RZLINE

Reflection of laser light , %

Fast ions (>1keV), %

Laser light, missing the droplet, %

Number of evaporated atoms-ions, % 2.7

10

0

30

40

Time, ns

Temporal

pulse shape

70

80

Objective

The main goal of the work is to investigate time/space/size fragment distributions during the process of target deformation due to laser pre-pulse.

• fragments distribution over size;

3. Target deformation 1. Laser-target interaction 2. Plasma-target interaction Deformed Sn target target

Modeling approach

3D Hydrodynamics description

284lar

Partition of the mesh between 144 processors

+ Volume of Fluid method + Two phases (Liquid and Gas)

+ Immiscible fluids + Isothermal

+ Viscositv

+ Compressibility

Calculation volume – 200x200x200 μm Cubic cell with side – 0.5 μ m

• mass distribution over angle;

• axial and radial velocity distribution over fragments mass;

RZLINE code \rightarrow modeling of laser-target interaction, plasma formation

An example for analytically defined laser pulse

RZLINE ablation pressure distribution is critical for the droplet dynamics (hole formation, debris, elongation velocity etc.).

RZLINE code \rightarrow modeling of Calculation of plasma ablation $OpenFOAM \ code \rightarrow$ hydrodynamics modeling of laser-target interaction, pressure at the target surface plasma formation *liquid target deformation*

Instabilities leading to fragmentation of the droplet

Kelvin–Helmholtz

explains why and how a falling stream of fluid breaks up into

smaller packets with the same volume but less surface area. It is

related to the Rayleigh–Taylor instability and is part of a greater

branch of fluid dynamics concerned with fluid thread breakup.

Mullins, B. J. and Mead-Hunter, R. and King, A. J. C. 2012. Simulating Plateau-

Rayleigh instability and liquid reentrainment in a flow field using a VOF method http://espace.library.curtin.edu.au/R?func=dbin-jump-full&local_base=gen01

Rayleigh–Taylor is instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing

the heavier fluid.

Plateau–Rayleigh

Shock waves

era02&object_id=189025 can cause spallation of the droplet material in different directions

+ Surface tension

+ Crushing/merge of droplet(s)

Commit's

The ligaments,

- + Ideal gas equation of state for surrounding gas
- and constant speed of sound for liquid droplet
- + Surrounding plasma influence through ablation pressure from RZLINE code

Open **V**FOAM® *OpenFOAM – free to use 3D simulation software library* with extensive CFD and multi-physics capabilities http://www.openfoam.com/

Droplet fragmentation: ligament formation

References

instability

E. VILLERMAUX and B. BOSSA (2011). Drop fragmentation on impact. Journal of Fluid Mechanics, 668, pp 412-435 <u>http://dx.doi.org/10.1017/S002211201000474X</u>

Pringuey, Thibault Roland Christophe Maurice. Large eddy simulation of primary liquid-sheet breakup https://www.repository.cam.ac.uk/handle/1810/244655

1 µs S. Cast 800 ns

The study is a result of hard work of many people and teams at **ISAN**,