A New Setup for Observation of **Forbidden Lines** from Metastable Ions produced in **Charge Exchange Collisions**

H. Tanuma, N. Numadate^A, H. Shimaya, N. Nakamura^B, and K. Okada^A Tokyo Metropolitan University ^ASophia University ^B University of Electro-Communications

Atomic Emissions in Plasmas

Excitation by Electron Impact : Major

 $\mathbf{A}^{q_+} + \mathbf{e}^- \rightarrow \mathbf{A}^{q_{+^*}} + \mathbf{e}^- \rightarrow \mathbf{A}^{q_+} + h\nu + \mathbf{e}^-$

Recombination (Ion - Electron) : Minor

 $\mathbf{A}^{q_{+}} + \mathbf{e}^{-} \rightarrow \mathbf{A}^{(q-1)_{+}*} \rightarrow \mathbf{A}^{(q-1)_{+}} + h\nu$

Charge Exchange (Ion - Neutral) : Very Minor

 $A^{q+} + B \rightarrow A^{(q-1)+*} + B^{-} \rightarrow A^{(q-1)+} + h\nu + B^{-}$

Energy levels of He-like O ions

Department of Physics, Tokyo Metropolitan University

I. M. Savukov et al. (2003)

EBIT (Electron Beam Ion Trap)

The trap: the electrons attract ions and ionize them more and more

The Principle of an EBIT @ Heidelberg

Spectra of He-like lons by EBIT

Figure 3. X-ray emission of heliumlike (a) argon, (b) sulfur, (c) silicon, (d) neon, (e) fluorine, and (f) oxygen measured with the ECS instrument on SuperEBIT.

In light elements, w > z (r > f) by electron impact.

P. Beiersdorfer *et al.* JPCS <u>163</u>, 012022 (2009). 5

Atomic Emission in Plasmas

Excitation by Electron Impact : E1 transitions

 $A^{q_+} + e^- \rightarrow A^{q_+^*} + e^- \rightarrow A^{q_+} + h\nu + e^-$

Recombination (Ion - Electron) : E1 & non E1

 $\mathbf{A}^{q_{+}} + \mathbf{e}^{-} \rightarrow \mathbf{A}^{(q-1)_{+}*} \rightarrow \mathbf{A}^{(q-1)_{+}} + h\nu$

Charge Exchange (lon - Neutral) : E1 & non E1 $A^{q+} + B \rightarrow A^{(q-1)+*} + B^{-} \rightarrow A^{(q-1)+} + hv + B^{-}$ \rightarrow Ion Beam Collision Experiments

Multiply Charged Ion Beam Lines

Setup for X-ray measurements

X-ray spectra in O⁷⁺ - He collisions

Intensity : 1s - 2p > 1s - 3p > 1s - 4p

Emission cross sections can be estimated from the spectra.

Capture Cross Sections in O⁷⁺ - He

The 1s²-1s²p transition is dominant due to the cascade from higher excited states (3s, 3d, 4s, 4d, 4f, 5s, 5d, 5g).

Department of Physics, Tokyo Metropolitan University

Setup for cross section measurements

Preliminary Results of Cross Sections

statistical weights of triplet and singlet = 3 : 1

$$\frac{\sigma_{\text{CX}}}{\sigma_{\text{X-ray}}} \approx \frac{\sigma_{\text{Singlet}} + \sigma_{\text{Triplet}}}{\sigma_{\text{Singlet}}} \approx \frac{1+3}{1} = 4$$

Triplet / Singlet Ratio in CX = 3 ?

IOP PUBLISHING

JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 245202 (9pp)

doi:10.1088/0953-4075/45/24/245202

Final-state-resolved charge exchange in C⁵⁺ collisions with H

J L Nolte¹, P C Stancil¹, H P Liebermann², R J Buenker², Y Hui³ and D R Schultz^{3,4}

¹ Department of Physics and Astronomy and the Center for Simulational Physics, University of Georgia, Athens, GA 30602, USA

² Fachbereich C-Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaussstr. 20, D-42119 Wuppertal, Germany

³ Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

⁴ Department of Physics, University of North Texas, Denton, TX 76203, USA

$$\frac{\sigma_{\text{Triplet}}}{\sigma_{\text{Singlet}}} = 3$$

Figure 12. Triplet–singlet ratios obtained from QMOCC results for n, *l*-resolved cross sections for C⁵⁺+H.

We want to observe the forbidden emission lines from the triplet states with **long lifetimes** which are produced in the charge exchange collisions.

lifetime ~ 1 ms ion velocity ~ 1000 km/s flight length ~ 1 km >> laboratory size

We need to storage ions in an ion trap.

Direct Observation of Emission from Triplet by an Ion Trap

Side view of a Kingdon trap

Top view of a trajectory of an ion in the trap

K. H. Kingdon, Phys. Rev. 21, 408 (1923).
D. A. Church *et al.*, Nucl. Instrum. Meth. B 56/57, 1185-1187 (1991).
N. Numadate *et al.*, Rev. Sci. Instrum. 85, 103119 (2014).

A Timing Chart of the Kingdon Ion Trap

FIG. 3. A timing chart of the ion trapping experiment. A master oscillator generates trigger pulses for controlling the timing. The HCI beam is chopped by the upstream deflector. The delay-time is set to be shorter than 10 ms for the present experiment.

N. Numadate et al., Rev. Sci. Instrum. 85, 103119 (2014).

Department of Physics, Tokyo Metropolitan University

FIG. 7. TOF spectra of ejected ions after (a) 5 ms, (b) 20 ms, and (c) 50 ms storage time when Ar^{6+} ions were injected into the Kingdon trap. The number of switching cycles for obtaining the spectrum is 10 000. The pressure of H_2 gas is 1.24×10^{-5} Pa.

Storage lons in the Kingdon Trap

 $I(t) = I_0 e^{-kt}$

$$k = \sigma n v$$

σ : cross sectionn : number densityv : ion velocity

Fig. 8. A plot of the extracted Ar^{5+} and Ar^{6+} as a function of storage time at H₂ pressure of 1.24×10^{-5} Pa. The data are well fitted by single exponential functions. The decay rate of the Ar^{5+} and Ar^{6+} are determined to be $28\pm 6 \text{ s}^{-1}$ and $67\pm 6 \text{ s}^{-1}$, respectively.

Without gas introduction, the ion can be stored more long time.

This trap will be used for observation of soft X-ray emission from the metastable ions produced in CX collisions.

Department of Physics, Tokyo Metropolitan University K. Numadate et al., Rev. Sci. Instrum. 85, 103119 (2014). 17

Summary

Present Projects :

- Capture CS > Emission CS
- Difference Metastable states with long lifetimes
- Development of Kingdon ion trap for observation of forbidden lines
- We will observe them soon.

Feature Plans :

- Hydrogen atom target
- Inter-combination lines
- Various kinds of ions

Dream :

 Population distribution of ions in CX has negative temperature. → X-ray Laser ?

Collaborators:

Astrophysics Group, Tokyo Metropolitan University: T. Ohashi, Y. Ishizaki, Y. Ezoe, S. Yamada

JAXA / ISAS:

K. Mitsuda, K. Shinozaki IAPCM (Beijing): L. Liu, J-G. Wang

Financial Support:

a Grant-in-Aid for Scientific Research (A) from MEXT

Thank you for your attention.

謝謝

御静聴ありがとうございました。

Department of Physics, Tokyo Metropolitan University