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Experimental setup

[7,8]

broadband beam splitter aren‘t available in the 
XUV regime [5] => Michelson-based setup not suitable [4,6]

Schematic sketch of the XCT setup

Optics, optical path & vacuum chamber

instead, a Common-Path setup was used

whole setup needs to be in vacuum, 
due to strong absorption of XUV 
in air
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OCT - established technique with broadband IR radiation

Introduction: Optical Coherence Tomography

OCT: based on 
a Michelson 
interferometer 
with a broadband 
light source [1]

Interference: 
comes from specific
sample depths dependant
on the reference mirror 
position
=>axial resolution

Coherence length: 
small due to 
broad bandwidth

reference mirror

broadband 
light source

sample

detector

Fourier-domain 
OCT: measuring 
the reflected 
spectrum

Time-domain OCT: 
measuring intensity 
and moving 
reference mirror

Wiener-Khinchin

OCT image of a finger tipMedical OCT device
Resolution: 
few micrometers

Penetration depth: 
few millimeters
[2]

Different OCT methods
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Experimental results with synchrotron sources
Raw data image: XUV spectrum of a silicon and gold layer system

3rd order
photon energy

1st order zero orderabsorption edge of silicon (99eV)

area of integration

Raw data: spectral intensity 
between 30 and 100 eV
depending on the dispersion-
corrected wave number 

Reconstructed depth 
structure: Fourier-
transform of the 
spectral intensity

depth

14.5 nm

90.4 nm

axial resolution
3.3 nm !

depth

18.9 nm
22.2 nm

4.0 nm

B₄C- & Pt-layers in the water-window

Si- & Au-layers in the Si-transmission window

Fourier-transform

Fourier-transform

Raw data: spectral intensity
between 280 and 560 eV 

Reconstructed depth 
structure: with 3.3 nm
axial resolution

3D imaging by lateral scanning

Si wafer

different layer systems on a 
Si-wafer

Result of the 3D scan
resolution: 12 nm (axial), 200 x 300 µm 
(lateral, because of the focus size)
stepwidth: 100 µm
points of measurement: 1260
duration of measurement: 2.5 h

Sample design on Si-wafer

a volume consisting of different layer 
systems was imaged by a 3D scan 

Schematic sketch of the imaged volume

real depth structure

expected relative 
depth structure

Si-wafer

5 nm gold

120 nm silicon

30 nm silicon

40 nm silicon relative measurement 
to the top layer
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Towards XCT with laser-based sources
First results adapting a HHG source for XCT

improving the photon flux by using lasers with higher pulse energy

Road map for further developments

pulse durations below 4 fs 
lead to isolated attosecond 
pulses and thus a smooth 
spectrum which is necessary 
for XCT

photon flux 3 orders below synchrotron radiation (10¹¹ photons/s)

photon energy in eV
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/s HHG with a few-cycle 

laser system in Argon

using longer wavelengths (>1000 nm) to increase the Cut-Off (~Iλ²) 
of the harmonic radiation and therefore the effective bandwidth for XCT

small bandwidth of 35 eV would reduce the axial resolution of XCT to 40 nm
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XUV Coherence Tomography
Axial resolution depends on coherence length only

short wavelengths and broad spectrum
lead to high resolution
=> with XUV-radiation: 
Nanometer resolution 

strong absorption in the XUV => spectral transmission windows 
of the sample materials limit the bandwidth and the resolution

Si-transmission window Water-window

l =11 nmc l =3 nmc

first experiments were performed
at synchrotron radiation sources

[4]photon energy in eV
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photon energy in eV

a high reflective thin top layer replaces 
the reference mirror [3]
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