

M. Wünsche^{1,2}, A. Hage^{3,4}, M. Taylor⁴, M. Yeung^{2,4}, ,C. Rödel^{1,2}, B. Landgraf^{1,2}, A. Willner³, M.J. Prandolini², M. Schulz³, T. Gangolf¹, S. Fuchs^{1,2}, H. Höppner³, R. Riedel² B. Dromey⁴, F. Tavella², C. Spielmann¹, M. Zepf^{1,2,4}, G. G. Paulus^{1,2}

¹ Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, Germany
² Helmholtz Institute Jena, Germany
³ Deutsches Elektronen Synchrotron, Germany
⁴ Queen's University Belfast, United Kingdom
Helmholtz Institute Jena

Martin Wünsche November 5, 2014

Alternative EUV sources

Synchrotron/FEL: large scale facility is needed

Plasma sources: limited by atomic line emission

Plasma sources: high divergence (4*Pi)

monochromatic sources

Could HHG be an alternative source?

Midorikawa, Nature Photonics 5, 640– 641 (2011)

Martin Wünsche November 5, 2014

- 1. Mechanism of High Harmonic Generation HHG
- 2. Using different concepts of HHG
- 3. Field of application XUV Coherence tomography

Helmholtz Institute Jena

Martin Wünsche November 5, 2014

Properties of HHG

Pulse duration in attosecond regime

Laser-like radiation

driven by small scale lab-based fs-lasers

intrinsically broadband

efficiency up to 10⁻⁵

GEMEINSCHAFT

Helmholtz Institute Jena

Martin Wünsche November 5, 2014

Mechanism of High Harmonic Generation

Iluminate an atom with an intense laser field – what happens?

for NIR-laser and gases: $E_{\rm photon} << U_{\rm atom}$

High non-linearity:	$N \cdot E_{\text{photon}} =$	U_{atom}
---------------------	-------------------------------	---------------------

Example	photon energy	Number of photons
Hydrogen (U=13.6 eV)	800 nm (1.55 eV)	>8
Helium (U=24.58 eV)	800 nm (1.55 eV)	>15

Martin Wünsche November 5, 2014

Ionization

Propagation in the laser field

Electron follows the field

Canonical momentum with vector potential \vec{A} $\vec{p}(t_0) + e\vec{A}(t_0) = \vec{p}(t_1) + e\vec{A}(t_1)$

Martin Wünsche November 5, 2014

Highly Efficient High Harmonic Generation

photon energy	intensity	Pondermotive Potential	Cut-off
800 nm (1.55 eV)	10 ¹⁴ W/cm ²	U _P =6.4 eV	E=36 eV (@Ar) , λ=34nm
1800 nm (0.69 eV)	10 ¹⁴ W/cm ²	U _P =32.4 eV	E=118 eV (@Ar), λ=10.6nm

Martin Wünsche November 5, 2014

beam characteristics

periodic process every laser half-cycle

Frequency comb $E_{harm} = N \cdot E_0$

efficiency up to 10⁻⁵

Divergence: ~mrad

Laser pulse	intensity	Average Power in XUV
10W (our laser)	10 ⁻⁵	100µW
2kW (fiber laser)	10 ⁻⁵	20mW

Martin Wünsche November 5, 2014 Highly Efficient High Harmonic Generation

Helmholtz-Institut Jena

Quasi-Phase matching

Producing XUV depends on phase

 $\Delta \varphi = \varphi_{\rm fund} - \varphi_{\rm XUV} < \pi$

Dephasing limit for HHG $\propto l \cdot p$

Reabsorbing XUV

A. Hage,..., M. Wünsche, RSI 103105 (2014)

Overcome: stop reabsorbing by using a phase shifter

Martin Wünsche November 5, 2014 **Highly Efficient High Harmonic Generation**

2. Spectral broadening

Using few-cycle laser pulse (cycles <3)

Reduced number of temporal emitters

Flattening spectral distribution

Conclusion

University of Jena

HHG: laser-like, coherence, spectral broadness, small divergence

Not usable for Lithography

Useful as imaging source

Helmholtz Institute Jena

Martin Wünsche November 5, 2014

Field of Application: XUV Coherence tomography

Using broad spectrum of XUV for resolution

University of Jena

S. Fuchs,,..., M. Wünsche, Appl. Phys. B (2012) 106:789-795

Visit the poster: Nanometer optical coherence tomography using broadband extreme ultra violet light (S44)

Martin Wünsche November 5, 2014 **Highly Efficient High Harmonic Generation**

HELMHOLTZ

Thank you for

your attention!

Helmholtz Institute Jena

Helmholtz-Institut Jena

Highly Efficient High Harmonic Generation

Martin Wünsche November 5, 2014