Laser Plasma Monochromatic Soft X-ray Source Using Nitrogen Gas Puff Target

M. Vrbova¹, P. Vrba², S.V. Zakharov³, V.S. Zakharov⁴, M. Müller⁵, D. Pánek¹, T. Parkman¹, P.Brůža¹

¹Czech Technical University in Prague, CR,
²Institute of Plasma Physics, AS CR,
³NaextStream sas France, 4KIAM RAS, Russia,
⁵Laser Laboratorium Göttingen, Germany

Outline

- Laser plasma created in nitrogen gas puff target is studied.
- Prevailing abundance of helium –like nitrogen ions is expected, if nitrogen plasma is heated up to temperature 40 ~ 80 eV.
- Monochromatic radiation with the wavelength λ = 2.88 nm, corresponding to the quantum transition 1s²-1s2p of helium like nitrogen ion, is expected.
- Laboratory experiments.
- Computer modeling.
- SXR emission of plasma heated by 7 ns and 170 ps Nd:YAG laser pulses is compared.
- Influence of laser pulse duration and energy and nitrogen gas density on the brightness of the SXR source is judged.

MÜLLER, M. et al.: Emission properties of ns and ps laser-induced soft x-ray sources using pulsed gas jets. Optics Express 2013, vol. 21, p. 12831

Emitted in-band SXR power

380mJ/170 ps laser pulse

Output: 0.12 mJ/4.9 ns SXR pulse

0.43 mJ/3.5 ns SXR pulse

Conversion efficiency: $2.7 \times 10^{-2} \%$

Conversion efficiency: $1.1 \times 10^{-1} \%$

Modeling by Z-star code

2D - RMHD code

Presumptions

- **Rotational symmetry**
- Axis of symmetry coincides with laser beam axis.
- Z coordinate is oriented in the opposite direction to the laser beam propagation.
- Gas stream approximated by a gas layer

Evaluated space-time development

- Plasma parameters
- **Radiation properties**
- Emission in spectral band • $2.876 \text{ nm} < \lambda < 2.886 \text{ nm}$

Gass puff target axis

ZΛ

60 um

шШ

20

R

Z-star code – input parameters

Laser energy [mJ]	450	380
Pulse duration [FWHM ns]	7	0.17
Peak power [W]	6.4 ·10 ⁷	2.24 ·10 ⁹
Focal spot radius [cm]	0.006	0.006
Focal position [cm]	0.25	0.25

Gas target parameters	
Thickness [mm]	0.72
Mass density [g.cm ⁻³]	(3.7 - 31) [.] 10 ⁻⁴

Absorbed and emitted power

(results of simulations)

Plasma spatial evolution – 7ns laser pulse

Mass density

Emitted SXR power

Plasma spatial evolution – 7ns laser pulse

Plasma electron temperature

Longitudinal plasma velocity

Plasma spatial evolution – 170 ps laser pulse

Mass density

Emitted SXR power

Spatial distribution of emitted SXR energy

November 2014 Workshop Dublin

Spatial distribution of emitted SXR energy

(170 ps laser pulse and various target mass densities)

SXR energy and brightness vs target density

7 ns laser pulse

Mass density g.cm ⁻³	$\begin{array}{c} \textbf{Spot imension} \\ (2R_{spot} \ge Z_{spot}) \\ \mu m^2 \end{array}$	Q _{euv,max} J.cm ⁻³	Energy in band mJ	Efficiency %	Brightness mJ.mm ⁻² .sr ⁻¹
3.7 ·10 ⁻⁴	60 x 660	1.57	0.000102	2.26 ·10 ⁻⁵	2.26 ·10 ⁻³
1.06 ·10 ⁻³	96 x 670	279	0.0365	8.11·10 ⁻³	4.49·10 ⁻²
3.1 ·10 ⁻³	132 x 780	1290	0.6543	1.45 ·10 ⁻¹	5.06 ·10 ⁻¹

170 ps laser pulse

Mass density	Spot dimension	Q _{euv,max}	Energy in band	Efficiency	Brightness
g.cm ⁻³	$(2R_{spot} \times Z_{spot})$	J.cm ⁻³	mJ	%	mJ.mm ⁻² .sr ⁻¹
	μm^2				
3.7 ·10 ⁻⁴	340 x 730	187	0.593	1.559·10 ⁻¹	0.19
5.4 ·10 ⁻⁴	350 x 820	349	0.783	2.059·10 ⁻¹	0.22
7.1 ·10 ⁻⁴	370 x 560	518	0.845	2.223·10 ⁻¹	0.32
1.06 ·10 ⁻³	362 x 300	1337	0.854	2.246·10 ⁻¹	0.63

Spatial distribution of emitted SXR energy

for 170 ps laser pulse and various laser energies

SXR Spatial frequency heterodyne imaging (SFHI)

single-exposure

Demonstration of soft X-ray SFHI imaging on thin section of biological sample

5 μ m section - *tendo calcaneus* of a Norway rat

2.88 nm

l mm

- additional information
- enhanced visibility
- negligible loss of spatial resolution
- SAXS anisotropy
- ad-hoc no tedious alignment,
 - no modification of imaging setup

SXR time-resolved luminescence spectroscopy

- Goals:
- to discover and assess defects in scintillation materials of biomedical importance
- to resolve the decay pathways (τ = ns .. ms) for better understanding of scintillation mechanism

Conclusions

- Results of modeling correspond properly to the experiments:
 - In-band SXR emitted power (or energy),
 - Spatial distribution of in-band emitted energy (SXR source dimensions)
- Plasma induced by 7 ns laser pulse is created along the laser beam passing trough the gas stream. Laser pulse is not fully absorbed in the plasma.
 - If the mass density of the target is increased, the SXR emission becomes higher, the laser power is more absorbed by plasma.
- Plasma induced by 170 ps laser pulse is created around the border between gas and vacuum near the entry point of the laser beam.
 - The efficiency of in-band SXR generation is much higher with shorter pulse.
 - Further increase in mass density of nitrogen target has negligible effect.

This work was supported by grants on the projects: GACR P102/12/2043 Pulse Source of Soft X- Rays for Biomedical Applications, MEYSF CR Project LG13029 Research in the Frame of Dense and Magnetized Plasma Center and the MEYS ESF Project CZ.1.07/2.3.00/20.0092: BIO-OPT-XUV (BOX) Research Team Advancement.