

High efficiency 10 kW class FEL for EUV lithography

Alex Murokh RadiaBeam Technologies, LLC

2014 International Workshop on EUV and Soft X-Ray Sources Dublin, Ireland November 3-6, 2014

Outline

- The case for industrial EUV FEL
- US EUV FEL consortium
- CW EUV FEL based on existing components
- Summary

10 kW FEL for EUVL • Presented at 2014 EUV Workshop on EUV and Soft X-ray Sources • Dublin, Ireland

From lamps to lasers

Distance along undulator

11/4/14

 XFEL – like an introduction of optical lasers – is a paradigm shift in Xray technology

> **Coherent Synchrotron Radiation (XFEL)** 10⁴-10⁶ in-bandwidth photons per electron

Incoherent Synchrotron Radiation 0.01-1 in-bandwidth photons per electron

Form idea to users facility

11/4/14

10 kW FEL for EUVL • Presented at 2014 EUV Workshop on EUV and Soft X-ray Sources • Dublin, Ireland

4

From probes to tools

 As the price per photon decreases – XFEL will be adopted in many industrial applications

XFEL for EUVL

- XFEL science is very mature (long way from the concept to 24/7 users managed light sources)
- The technology has evolved through its R&D phase and entered "HVM" (more ph./\$)
- LCLS-II is a gateway to industrial XFELs
- EUV lithography is an ideal high added value application to be an early adopter of XFEL tools
- All the technical prerequisites for EUV lithography XFEL are in place

US EUV FEL consortium

- Consortium of national labs, universities, and industrial suppliers was formed to explore industrial FEL opportunities
- Represents large part of the FEL community in the US

Consortium design strategy

- Identify baseline design that achieves > 10 kW output at 13.5 nm using <u>demonstrated accelerator</u> <u>technology</u>
- Performance and reliability are the primary considerations
- Leverage design on the existing projects, infrastructure, resources and expertise

Longitudinal dynamics

- LCLS-II is a good example: 1MHz SCRF XFEL designed for, but not limited to 1.2 MW beam power
- Factor of ~100 bunch compression without emittance degradation (chicanes, 3.9 GHz cavity, laser heater, dechirping, – unprecedented degree of control over e-beam longitudinal phase space).

FEL tapering efficiency

- Undulator tapering allows extracting more power out of the e-beam after saturation
- 13.5 nm wavelengths range favors good tapering efficiency, due to optimal transverse overlap
- Initial simulations indicate > 0.5% efficiency

10 kW FEL for EUVL • Presented at 2014 EUV Workshop on EUV and Soft X-ray Sources • Dublin, Ireland

Baseline configuration

• Benefits:

- Simplest approach, used for all existing and planned XFELs
- All components are demonstrated and many are industrialized
- Enables highest FEL efficiency

• Risks:

High power beam dump

Avg. EUV power	10 kW
Avg. beam current	3 mA
Avg. beam power	2 MW
FEL efficiency	0.5%
Energy @FEL	650 MeV
Energy recovery?	NO
Power at dump	2 MW

Energy recovery linac

• Benefits:

- More compact configuration
- Energy recovery
- Reduced activation

• Risks:

- Poor FEL efficiency
- Complex beam transport
- Never demonstrated for XFEL

Avg. EUV power	10 kW
Avg. beam current	15 mA
Avg. beam power	12 MW
FEL efficiency	0.1%
Energy @FEL	650 MeV
Energy recovery?	YES
Power at dump	100 kW

Importance of FEL efficiency

- Smaller average current is always less risk
- Design depends on the limit of FEL efficiency

11/4/14

LCLS-II Collaboration

10 kW FEL for EUVL • Presented at 2014 EUV Workshop on EUV and Soft X-ray Sources • Dublin, Ireland

Example: LBNL CW gun

- The cavity structure is large enough to withstand the heat load and operate in CW.
- High repetition rate beams.
- High vacuum conductivity-long cathode lifetime.
- Based on mature RF and mechanical technologies.

SCRF Program at Fermilab

- Two major efforts in progress
 R&D for PIP-II 800 MeV H- SRF linac (HEP)
 Fabrication of 17 CW Cryomodules for LCLS-II
- Recent improvement in SCRF cavity surface processing enabled large increase in Q-factor

ANL undulator technology

10 kW FEL for EUVL • Presented at 2014 EUV Workshop on EUV and Soft X-ray Sources • Dublin, Ireland

17

Status summary

10 kW industrial EUV FEL can be developed with minimal risk using the existing technological base:

- High Brightness CW Injector
 - APEX photoinjector under construction for LCLS-II
 - DC Gun-Cornell (shown 80 mA average current)
- CW SCRF cryomodules are under construction at Fermilab and JLAB for the LCLS-II
- Hybrid permanent magnet technology for undulators is mature (kilometers has been built)
- Accelerator design: XFEL physics and beam dynamics are well understood, supported by high fidelity numerical tools, and validated