

M. Nevrkla, A. Jančárek

2014 International Workshop on EUV and Soft X-Ray Sources, Dublin, Ireland, November 3-6, 2014

DISCHARGE DRIVERS DEVELOPED AT FNSPE CTU since 2009

2009

• lasing at 46.9 nm

5 Hz

- inspired by design of J.J. Rocca's group
- $\sim 10^{12}$ ph/Sr at 2.88 nm

2011

- modification for 2.88 nm
- $\sim 10^{13}$ ph/Sr at 2.88 nm
- multiple Z-pinch
- 5 Hz

2013

- driver for 13.4 nm laser
- full-rate current not reached yet
- $\sim 10^{14}$ ph/Sr at 2.88 nm
- 1 Hz

Z-PINCHING CAPILLARY DISCHARGE

- Plasma heating by shock thermalization
- Plasma cooling by fast adiabatic expansion
- Long (~ 10s cm) thin (~ 100s um) plasma column
- Stabilization by pre-ionization discharge
- ASE No mirrors -> high gain needed G ~ 1

P. Vrba, M. Vrbová, N. A. Bobrova, and P. V. Sasorov, "Modelling of a nitrogen x-ray laser pumped by capillary discharge," *Cent. Eur. J. Phys.*, vol. 3, no. 4, pp. 564–580, 2005

64 62

48

44

40

38

36

Time I_{max} (ns)

3B-RECOMBINATION PUMPING SCHEME OF 13.4 NM LASER

Electron temperature Te

- >50% abundance of fully striped ions -> initial Te > 140 eV
- high 3b-recombination rate -> drop of Te < 60 eV

Electron density Ne

- Ne > 10^{19} cm⁻³ to ensure high 3brecombination rate
- limited to $N_e \approx (5 \div 10) \times 10^{19} \text{ cm}^{-3}$ (to reduce collision excitation into lower laser level 2)

Cooling time

- faster then 3-b recombination rate
- β^{-1} (Te = 60 eV, Ne = 4·10¹⁹ cm⁻³) \approx 5 ns

Optimized discharge condition for ASE at 13,4 nm – Jakub Hübner

DISCHARGE DRIVER

- -> Slab water capacitor design with pulse compression:
- + table top size of the driver
- + well shielded capillary

22.4 cm long capillary (20.4 cm shielded!)...L ≈ 60-80 nH

- + Both sides of capillary opened.
- complex design
- High voltage at capillary ends.

CAD model of discharge driver. 1 – sparkgaps, 2 – capillary, 3 – water capacitor

DRIVER FUNCTIONAL SHEMATIC DRAWING

Functional schematic drawing. Bolt line – discharge circuit. Blue – electrical driving signal. Red – optical driving signal

ASSEMBLY

CAN THE DRIVER BE USED AS W-W RADIATION SOURCE?

- At present the driver operates at 55% of expected full-rate current.
- The driver is designed to produce N6+ and N7+ ions at Ne $\sim 10^{19}$ cm^{-3}.
- But we need only N5+ ions.
- \bigcirc high current = high XUV energy/pulse
- long capillary
 low efficiency (self-absorption)
 complex design
- ⊖ low rep-rate (1 Hz)

DISCHARGE CURRENT AND XUV INTENSITY

Pressure [Pa]	Peak power (kW/Sr)	Brightness (ph/Sr)	Brightness (ph/Sr)
50	300	9.5	1.4e14
80	250	7.3	1.0e14
120	300	12.0	1.7e14
180	320	10.7	1.5e14
220	390	8.6	1.3e14
400	480	8.4	1.2e14

Values without filter

SPECTRA

400 nm Ai filter

500 nm Ti filter

SOURCE IMAGE

- Pinhole image
- FWHM = 280 μm

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF NUCLEAR SCIENCES AND PHYSICAL ENGINEERING

SUMMERY

	2009	2013
Max. current	27 kA	40 kA*
Rise-time	46 ns	25 ns
Capillary diameter	3.2 mm	3.2 mm
Capillary length	11.3 mm	22.4 mm
source size FWHM	360 μm	270 μm
Beam divergence	30 mrad (7 × 10 ⁻⁴ Sr)	10 mrad (8 × 10 ⁻⁵ Sr)
Peak intensity	87 kW/Sr	480 kW/Sr
Brightness	4 mJ/Sr	12 mJ/Sr
(at 2.88 nm)	$5.5 \times 10^{13} \text{ ph/Sr}$	1.7 × 10 ¹⁴ ph/Sr
Energy in the beam	2.24 μJ (3 × 10 ¹⁰ ph)	770 nJ (1 × 10 ¹⁰ ph)

radiance values without filter

* 55% of expected full-rate current

CONCLUSOION AND FUTURE PLANS

- Discharge driver for 13.4 nm laser research still in development
- Meanwhile tested as a source at 2.88 nm
 - High peak intensity, low beam divergence
 - Far from optimal design for 2.88 nm (long capillary)

Plans

- Increase discharge current
- Time-resolved discharge plasma diagnostics
- Looking for ASE at 13.4 nm

THANK YOU FOR ATTENTION

ACKNOWLEDGEMENT

This work was supported by the MEYS of the Czech Republic grant no. LG13029.

2014 International Workshop on EUV and Soft X-Ray Sources, Dublin, Ireland, November 3-6, 2014