

Evolution of the Energetiq Electrodeless Z-Pinch™ EUV Source:

Control of Plasma Length

Stephen F. Horne,

Donald K. Smith , Paul A. Blackborow, Matthew M. Besen, Matthew J. Partlow, Deborah Gustafson, Energetiq Technology, Inc

ENERGETIQ

Outline

- The Electrodeless Z-Pinch[™] overview of basic physics
- What determines plasma length?
 - Some early history...
 - The EQ-10 metrology source as a product.
- EQ-10 design is constrained by physics. Try to break constraints by introducing new physics – axial magnetic fields.
- Unexpected results....
- Conclusion

ENERGETIC Electrodeless Z-Pinch™ EUV Source

- Our group had decades of experience with inductive plasmas
 - Controlled fusion program (U. Wisconsin, MIT Plasma Fusion Center)
 - Industrial applications (Atomic Fluorine and other radicals)
- Advances in magnetic materials –(fast switching cores) and power electronics enabled a new device to be designed.
- Energetiq was founded to develop and commercialize this device.

ENERGETIQ

Primary topic – how do we control plasma length in the Electrodeless Z-pinch? (including some history...)

- Standard Z-pinch has electrodes –
- Forces plasma to have a specific maximum length can't be longer than distance between electrodes, because current flows only there
- A small (short) EUV emission region simplifies optics design, saves wasted light/power...
- Electrode-less pinch has current flow over long region. How to control plasma length?

To control plasma length, control plasma radius...

- Total voltage around plasma loop determined by d/dt of magnetic flux in core. Current is constant around length of loop, so...
- Electric field distribution along plasma loop determined by plasma impedance. Current is ramping, so inductance/length is key.
 - Inductance/unit length dL/dl ~ log(1/r) r-> zero, dL/dl approaches infinity.
- Most of the applied voltage appears across the narrowest plasma cross-section. Nearly all the pulse energy is dissipated there.
- To control plasma length, control the radius.

ENERGETIQ

Z-pinch Snowplow Model...

$$d / dt \left[\frac{\pi \rho (r_0^2 - r^2) dr / dt}{\mu_0 I^2 \omega^2} \right]^{(1/4)} = -\frac{\mu_0 I^2 (t) / (4\pi r)}{\int_{J}^{B} \frac{\pi r}{\mu_0 I^2 \omega^2}}$$

I : Current, assumed sinusouida 1, frequency ω *t* : Characteristic time. Pinch goes to zero at 3/2 t. $t \approx r_0$, so average pinch velocity does not depend on initial radius. Pinch will occur at axial location where initial (unpinched) r_0 is a minimum.

•See Sheshadri, Fundamentals of Plasma Physics, or Krall and Trivelpiece, Principals of Plasma Physics

ENERGETI

 r_0

ENERGETIQ

Early data – first attempts to control source size

 Prototype source development, 2004-2005

ENERGETIQ First experiments had very large "bore"

- No attempt to control plasma length –
- ~ 8 cm long plasma!

ENERGETION A program to investigate plasma size, lifetime issues...

• Various bore geometries and materials tested – examples...

Silicon Carbide, specific geometry ENERGETIQ

Material	Length	Diam	Geometry	Pwr(2pi)	Etendue	Fwhm I	Fwhm d
POCO Graphite	0.96	15	offset	31.36	6.9005	7.3859	0.836
POCO Graphite	0.96	10	recurve	4.95		3.1	2.3
Oriented Graphite	1.5	10	washer	26.25	6.6421	7.4551	0.7994
Oriented Graphite	1.5	15	washer	25.67	7.714	5.5958	1.187
Oriented Graphite	4.5	10	3 washers	25.91	2.543	3.867	0.5815
Oriented Graphite	3	15	washer	33.08	5.3696	6.6506	0.724
Silicon Carbide	5	15	washer	32.72	3.6709	4.8996	0.6661
Silicon Carbide	3	15	2 washers	32.15	5.5233	5.2937	0.9145
Silicon Carbide	3	15	2 washers	10.02	5.7322	5.4921	0.917
Silicon Carbide	3	15	2 washers	9.74	7.2776	6.251	1.0242

Effect of collector geometry

- Identical etendue... different collection angles
- 45 degree collector
- 54 degree collector
- Intensity distribution, collector design, optics are all coupled.
- Etendue specification is only a start. Collection angle (first optic) drives optics and beamline design.
- •Derra, Guenther H., and Wolfgang Singer. "Collection efficiency of EUV sources." In *Microlithography 2003*, pp. 728-741. International Society for Optics and Photonics, 2003.

ENERGE'

Learning from prototype \rightarrow commercial metrology source... key points

- Pick a geometry and stick with it...
- A 25 eV Xenon plasma is a fierce environment for materials
 - Lifetime of plasma-facing components determine maintenance interval.
 - Resistance to sputtering is key.
- For metrology, smaller etendue is acceptable.
 - Long plasmas, small collection angles easier to manage
 - More power and brightness from source
 - Simpler optics in instrument.
 - Smaller foils, mitigation structures

ENERGE'

ENERGETI Xenon source performance: EUV power

• Power in Watts, into 2π steradians , within 2% BW of 13.5 nm :

- Parameters: input voltage and pulse rate. Input power here ~ 4 5 kW
- Input pulse energy increases with input DC voltage

Stability in Plasma Position

•X position [microns]

- Image recorded at 13.5 nm, once an hour for over 300 million pulses (~44hours) of continuous operation. Position then extracted from images:
 - Position: $\sigma_x = 5.8 \ \mu m$ and $\sigma_y = 5.0 \ \mu m$ 10 200•150 n •100 Y position [microns] -10 50 -20 •-100 -200 100 -20 -10 0 10 20 -50 -100 •FWHM ~ 400 µm -150 • This is open-loop stability: No feedback! -200

ENERGETIQ

ENERGETIQ Xenon Source Performance: EUV brightness

- Power plus imaging measurement
- Typical fwhm ~ 400 microns
- Profile is not Gaussian

Sample of Current Installations (~20 worldwide)

•EUV Technology Outgassing Tool Installed at IMEC

Figure 2 Actinic mask blank inspection tool built at MIRAI-Selete clean room and concept of its inspection optics using dark-field imaging.

•Actinic Mask Inspection Tool at Selete

 Flood Exposure system installed at Osaka University (Tagawa Lab)

Figure 2. Photograph and schematic of resist outgassing evaluation tool used for GC-MS method.

•LithoTech Outgassing Tool installed at Selete

Cryo-tomography with EQ-10 at Diamond Synchrotron, England

UltraXRM-L220c Development and Correlative

Microsc. Microanal. 19, 22-29, 201 doi:10.1017/51401927612013027 Microscopy... Microanalysis CIRIN.

UC Davis / PNNL / Xradia Paper

Laboratory-Based Cryogenic Soft X-Ray Tomography with Correlative Cryo-Light and Electron Microscopy

David B. Carlson,¹ Jeff Gelb,¹ Vadum Palshin,² and James E. Evans^{3, a, 1} ¹Driversity of California, Davis, Department of Molecular and Calidar Biology, 1 Sindle Avenue, Davis, C

Preliminary Laboratory-source Results (Diamond) courtesy Liz Duke and Colleagues

diamond Filler

Nuclear / perinuclear region of a HeLa cell Xradia 825 Ultra

"Nuclear buds" With dense fine structure 420 nm diameter

ZEISS

Nuclear pores ~ 120 nm in diameter in XY and Z dimensions

ENERGETIQ

The story so far...

- Initial experiments (first prototype) gave long plasmas... too long
- We exploited the connections between geometric boundary conditions and plasma inductance to develop a robust product, appropriate for many metrology and infrastructure applications.
- Within the physics and engineering constraints set by the existing device, we were near an optimum.
- To get higher performance, need to add some new physics.
- Consider an axial magnetic field, varying along the z-pinch axis.
- By changing the radial pressure balance, can this influence plasma length?

Add an axially varying B-field; ENERGETIQ B(z) – use the z-pinch itself to compress an initial static field $d / dt \left[\pi \rho (r_0^2 - r^2) dr / dt \right] = -\mu_0 \mathbf{I}^2(t) / (4\pi r) + P_m (2\pi r)$ $P_m = B(z)^2 / (2\mu_0) \checkmark$ Conductive plasma shell will compress an initial field $\frac{B_0(z)^2 r_0^4}{r^3} \frac{\pi}{4}$ $\frac{\mu_0}{\mu_0}$ ro Geometric compression of initial weaker field produces tesla-size fields as pinch progresses

Adding an axial magnetic field... ENERGE

• We introduce another pressure against which the pinch force must act.

$$P_m = B(z)^2 / (2\mu_0)$$

- The axial field will be compressed and magnified by the collapsing, conductive plasma
- Pressure ~ B^2, B ~ 1/R^2, so magnetic pressure resisting the pinch ~ 1/R^4
- By tailoring B(z), we can control this axial pressure, thus controlling both the position and axial length of the plasma.
- Make the B-field zero at the center of the bore.
 - A spindle cusp
 - Need field to be "significant" at the ends of the bore .
 - How much field?

Three estimates of required field ENERGET

- Typically operate about 100 mT neutral pressure.. ~ 13 Pa
 - Solve for B in Tesla \sim .006 T, or **60 G**.
- Plasma pressure density 1.e18, Te 25 eV, nkt ~ 4.e6 Pa
 - B=3T, compressed
 - Compression increases B by factor of (6 mm / 0.4 mm)² = 225
 - Initial B .014 T, or 140 G
- Plasma self field, at compression (5000 A, r=0.2 mm), 5 T
 - Take credit for compression, as in 2) result is comparable
 - Bz = B_theta is almost certainly way too much field.
 - Conclude need 100 200 G field to affect pinch behavior.

No space or access for coils... ENERGETIQ use permanent magnets

Six magnet assemblies; similar poles inward facing creates a modified spindle cusp.

Axial magnetic pressure profile

- Three magnets in 6 positions produces ~ 10X neutral gas pressure at +/- 8 mm
- Desired result...
- Should be plenty of field to see any effect.

ENERGETIQ

First attempt... 3 x 6 magnets, standard bore

- Source would not operate.
 - Magnets somehow caused plasma-bore arcing.
 - Removing the magnets restored normal operation.
 - Concept was abandoned for the moment.
- Second attempt –full length SiC bore
- Shield the copper from the plasma...

Start with two magnets, not three

Main results – unexpected shift ENERGETIQ in operating point.

Magnetic field allows more efficient operation at low pressure

ENERGETIQ

Brightness data shows weaker ENERGETIQ effect

Conclusions

- The cusp field was supposed to shorten the plasma.
 - No effect was seen
- Power, brightness data agree one magnet is better than zero or two
- Main effect seen shift to lower pressure operating point
- Possible explanation E II B?
 - Electric field E Curl $\mathbf{E} \sim \mathbf{dB}/\mathbf{dt}$ in induction core
 - Magnetic field B Curl B ~ J; J looks like a surface current on the same core
 - Geometry of **B**,**E** fields should be very similar.
- Could provide very efficient electron confinement, leading to higher electrical efficiency, new operating point.
- Might be a path to exploit in commercial source...

ENERGETIQ

Thank you!