Source radiance requirements for high-resolution imaging and interference techniques

Larissa Juschkin RWTH Aachen University

RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN

CHAIR FOR EXPERIMENTAL PHYSICS OF EXTREME ULTRAVIOLET

JARA FIT

Applications summary

XUV: short wavelength and strong light matter interaction

lateral & in-depth (3d) nm resolutions with element sensitivity and high throughput

<u>Microscopy</u>

- 3d imaging (cells, electronics)
- "no" sample preparation
- several µm penetration depths
- magnetic (spin) contrast with polarized light

Patterning

- high density arrays
- large exposition areas
- access to < 10 nm scale
- negligible proximity effect
- independent on substrate

Scatter/diffractometry

- nano-roughness
- nano-structures arrays
- nano-defect inspection
- lens less imaging with coherent light

e

<u>Spectroscopies</u>

- element selectivity
- chemical bonding (NEXAFS)
- small penetration depths of radiation (<100 nm)
- large grazing incidence angle

EUV and soft x-ray microscopy: element-sensitive contrast and high spatial resolution (down to ~10 nm)

ILT

Information Technology

FÜR TECHNOLOGIE OPTISCHER SYSTEME EXPERIMENTAL PHYSICS

OF EXTREME ULTRAVIOLET

Magneto-optical microscope

XMCD-contrast at 3p edges of Fe, Co and Ni

XMCD at Co 3p absorption edge

Sample: [Co (0.8 nm) / Pt (1.4 nm)]_{16x}

D. Wilson, D. Rudolf, et al., Review of Scientific Instruments 85, 103110 (2014)

Photon detections: required flux based on contrast

Contrast:

$$C = \frac{\text{signal difference}}{\text{background}} = \frac{n_{ph_f} - n_{ph_b}}{n_{ph_b}}$$

Sensitivity index:

$$d' = \frac{\text{separation}}{\text{spread}} = \frac{n_{ph_f} - n_{ph_b}}{\sqrt{n_{ph_b}}}$$

d' of at least 5 is needed for 100% certainty in distinguishing image features

"Signal Detection Theory" or A. Rose, "Television pickup tubes and the problem of vision", Advances in Electronics **1**, 131-166 (1948)

Quasi-ideal detector (signal noise dominating):

$$d'_{\rm det} = \sqrt{QE} \cdot d'$$

 $n_{ph_b} \ge -$

Required number of photons:

Source radiance and etendue

Requirements on source radiance

At sample:

Laboratory-scale lens-less EUV imaging

Gains compared to standard lens-based microscopy

- More compact setup, easier alignment
- Better use of incidence light => lower dose
- Reconstruction of phase shift and attenuation

Basic principle for coherent imaging & experimental setup

Reconstruction procedure and result: illumination wave front

- 1. Background subtraction
- 2. Hot pixel detection
- 3. Data binning (5x5)
- -> oversampling ratio reduction
- -> dynamic / SNR enhancement
- (4. Symmetrizing)

5. Applying OSS algorithm (HIO + filtering outside of support) ->128 independent runs 6. Averaging of the top 5 images with lowest error (R_{factor} =12.8%) 7. Size determination from experimental distances: pinhole diameter: 11.2 µm

Coherence and radiance requirements for lens-less imaging

Prof. Dr. Larissa Juschkin 2014 International workshop on EUV and soft x-ray sources November 3-6, 2014, UCD, Dublin, Ireland

Different spatial frequences 1/d are

 $\sin \alpha_d = \lambda / d$

Oversampling O > 2 is required for

Resolution is determined by detector

Field size and oversampling determine minimum pixel numerical aperture

Number of pixels in image is determined by bandwidth: $N_{pixel} =$

$$=\frac{\lambda}{\Delta\lambda}\cdot\frac{1}{C}$$

better compared to lens-based imaging Page 14

 $25 \cdot hc$

OCHSCHULE EXPERIMENTAL PHYSICS OF EXTREME ULTRAVIOLET

VESTFÄLISCHE ECHNISCHE

Interference lithography

Large-area periodic structures

- Large depth of focus
- Requires a coherent light
- Low cost no complicated and expensive optics
- Ultimate resolution (half-pitch) for the wavelength $\sim \lambda/4$

EUV: $\lambda = 11 \text{ nm}$ for

feature size: ~3 nm

EUV-IL: high resolution, scalable throughput, simple optical system, negligible proximity effect, no charging effects

Applications:

- templates for guided self-assembly
- nano-optics, meta-materials
- ultra high density patterned magnetic media
- quantum dot 2D and 3D arrays, nanowire arrays

Talbot self-imaging, 2:1 pattern demagnification

Achromatic Talbot self-imaging:

- Demagnification of pattern by up to a factor of 2
- Large depth of field

Required spatial coherence for achromatic Talbot self-imaging:

 $I_{cob} = 4p\lambda/\Delta\lambda$

p period for l/s or pinhole grating, λ illumination wavelength, $\Delta\lambda$ bandwidth of radiation

Talbot distance:

monochromatic: achromatic:

 $n \cdot Z_T = 2p^2/\lambda$ $Z_M = 2p^2 / \Delta \lambda$

Example: n=1, p=100 nm, λ =10.9 nm, $\Delta\lambda/\lambda$ =3.2% monochromatic: $Z_T=1.83 \ \mu m$ achromatic: Z_{M} =57.33 µm

EUV laboratory exposure tool – technical specifications

S. Brose, S. Danylyuk, L. Juschkin, D. Grützmacher et al, Thin Solid Films 520, 5080 (2012)

- Cleanroom class 100 (ISO 3) environment
- High power EUV discharge produced plasma source:
 - → Optimized emission spectrum with a peak wavelength at $\lambda = 10.9$ nm and a spectral bandwidth of 3.2%
 - ➔ Up to 100 W/(mm²sr) radiance at 10.9 nm
- Illumination schemes: proximity printing and Talbot interference lithography
- Accepts up to 100 mm wafer
- Max. exposable area: 65 x 65 mm²
- Single field: 2 x 2 mm²
- EUV sensitive CCD camera
- High precision positioners on all axes (encoder resolution < 10 nm)
- Dose monitor for $\lambda = 13.5$ nm

Exposure results EUV-LET

Lines and spaces pattern (half-pitch 100/50 nm)

Proximity printing Half-pitch 100 nm, distance $z \approx 0 \ \mu m$ Resist:ZEP520A

Achromatic Talbot Self-Image Half-pitch 50 nm, distance $z \approx 50 \ \mu m$ Resist:ZEP520A

→ Same lithography mask
→ Pitch reduced by factor 2

 \rightarrow Line width reduced by factor ~10

Exemplary application – cross-bar arrays for phase change memory (PCRAM)

Nanophotonic resonators

Radiance requirement for Talbot self-imaging lithography

Prof. Dr. Larissa Juschkin 2014 International workshop on EUV and soft x-ray sources November 3-6, 2014, UCD, Dublin, Ireland

Mainly 0, 1st and -1st orders contribute to Talbot self-imaging effect (sin $\alpha_d = \lambda/d$)

Coherence requirement depends on period *d* and mask to wafer distance *g*:

Exposure dose is determined by resist sensitivity D and MTF from mask to wafer

$$\Rightarrow L \cong \frac{D/MTF}{t_{exposure} \cdot T_{system} \cdot \Omega_{illumination}}$$

2d - array:
$$\cong \frac{4 \cdot D \cdot g^2}{MTF \cdot t_{exp} \cdot d^2} \qquad implies \\ \text{slit-like} \\ \text{1d - array:} \cong \frac{4 \cdot D \cdot g^2}{MTF \cdot t_{exp} \cdot d \cdot F} \qquad \text{source,} \\ \text{alignment} \\ \text{issue} \end{cases}$$

Page 20

Summary – radiance requirements

- EUV and soft x-ray microscopy enables imaging of nanometer sized object features with high analytical sensitivity, very good spatial resolution, and penetration depths compatible with relevant sample sizes.
- Source radiance requirements are derived from the fundamental considerations of sample resolution, image contrast, detector quantum efficiency and throughput.
- Photon counting is characterized by Poisson statistics. Requirement of being able to distinguish between (noisy) signal and (noisy) background results in inverse dependence of radiance on contrast squared.
- The etendue used by a high resolution EUV imaging application scales with the area of the smallest feature to be resolved or detected which is of the order of λ^2 .
- Taking into account conservation of etendue ("not compressibility" of light) and photon energy, the required radiance is proportional to λ^{-3} .

 $L_{source} = \frac{25 \cdot fps \cdot h \cdot c / \lambda}{c^2 \cdot T_{system} \cdot \pi \cdot NA_{illumination}^2 \cdot A_{to \, resolve \, or \, detect}}$

In accessing the nano-world with laboratory imaging systems, this strong dependence implies a serious challenge for the source development.

Outlook

XUV plasma based sources

- new very efficient technology
- "Aachener Lampe" successfully used in EUVL & metrology

High brilliance metrology sources

- small emitting volume
- XUV lasers

3d imaging

- combining of lateral and in-depth resolution
- cell nanotomography

Spectro-microscopy

future research challenges

- combining of spectral and lateral resolution
- magnetic domains

<u>Coherence</u>

- holography
- lens less imaging
- interference litho

Acknowledgements

EP-EUV, RWTH-Aachen, Chair for Experimental Physics of EUV Hyun-su Kim, Lars Lötgering, Aleksey Maryasov, Dennis Rudolf, Jan Bußmann

TOS, RWTH-Aachen, Chair for Technology of Optical Systems

Sascha Brose, Serhiy Danylyuk, Ralf Freiberger, Stefan Herbert, Georg Kunkemöller, Peter Loosen, Jochen Stollenwerk, Jenny Tempeler

Fraunhofer ILT – EUV und Plasma Technology

Klaus Bergmann, Felix Küpper, Michael Scherf, Stefan Seiwert, Jochen Vieker, Alexander von Wezyk...

Coherent Imaging Group

John Miao, Rui Xu ...

Thank you very much for your attention!

