DEVELOPMENT OF 250W EUV LIGHT SOURCE FOR HVM LITHOGRAPHY

EUVL Workshop 2016

Hakaru Mizoguchi*, Taku Yamazaki**, Takashi Saitoh**

*Gigaphoton Inc. Oyama Headquarter (400 Yokokura-shinden, Oyama, Tochigi, 323-8558, Japan) **Gigaphoton Inc. Hiratsuka Facility EUV Decelopment Div. (3-25-1 Shinomiya, Hiratsuka, Kanagawa, 254-8555, Japan)

Introduction

- Issue of EUV Light Source and History of Source Power-Up
- 250W Pilot System Development Update
 - Key Component Technologies Update
- Prototype LPP Source Systems Experiment Update
 - Proto Device #1
 - Proto Device #2
- For Future Development of 500W LPP Source
- Summary

3

Introduction

- Issue of EUV Light Source and History of Source Power-Up
- 250W Pilot System Development Update
 - Key Component Technologies Update
- Prototype LPP Source Systems Experiment Update
 - Proto Device #1
 - Proto Device #2
- For Future Development of 500W LPP Source
- Summary

AGENDA

G10K **G20K**

G41K

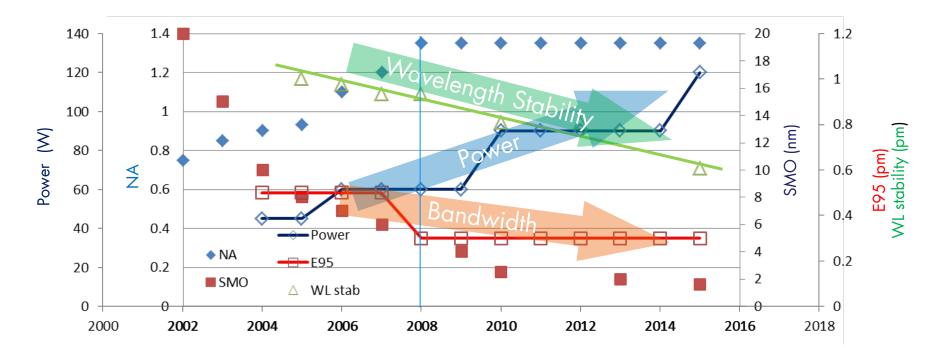
GT40A

Laser Installed

2015

130 Laser Installed 15% Market Share 250 Employees

400 Laser Installed 200 Employees


64% Market Share Laser Installed ✓ 40% Market Share 700 Employees ✓ 25% Market Share√ 370 Employees

GT64A

Gigaphoton's Growth 2005 2010

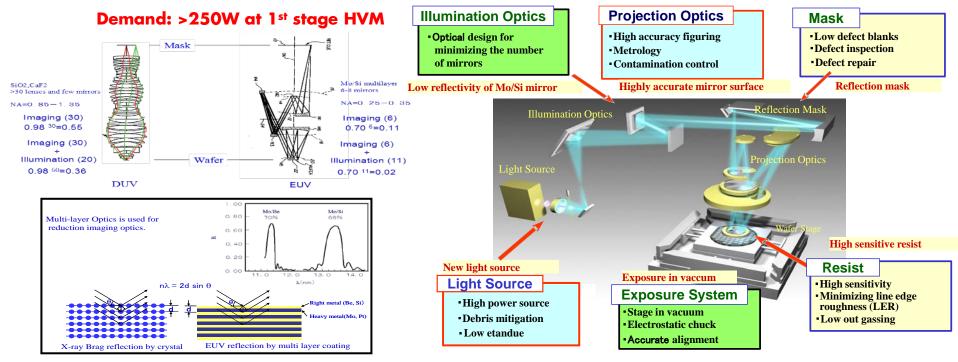
Improvement of ArF Laser Performance during Multiple-Exposure

5

New Fab will Open for Expanding Demand of DUV Laser

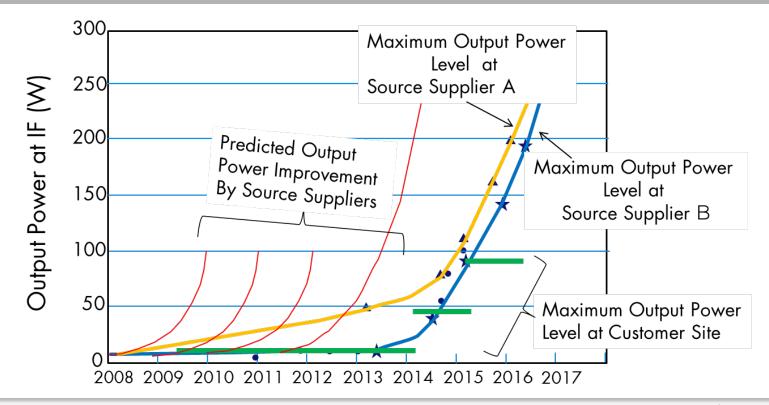
• Introduction

Issue of EUV Light Source and History of Source Power-Up


- 250W Pilot System Development Update
 - Key Component Technologies Update
- Prototype LPP Source Systems Experiment Update
 - Proto Device #1
 - Proto Device #2
- For Future Development of 500W LPP Source
- Summary

AGENDA

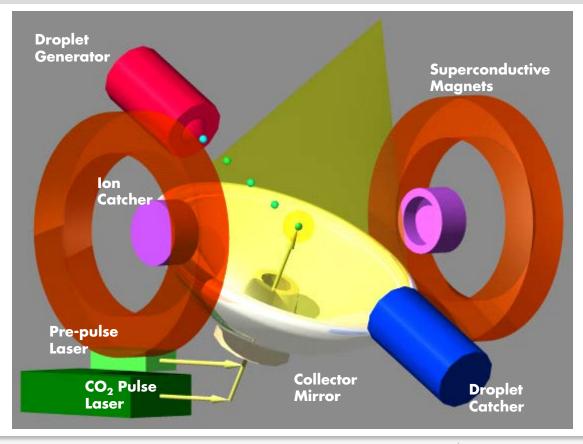
Issue of EUV lithography (1)


EUV light transmittance is only 2% at 11 refection mirror system

High power light source for HVM exposure tools is the **KEY** Issue

Issue of EUV lithography (2)

History of EUV source output power improvement



- Issue of EUV Light Source and History of Source Power-Up
- 250W Pilot System Development Update
 - Key Component Technologies Update
- Prototype LPP Source Systems Experiment Update
 - Proto Device #1
 - Proto Device #2
 - For Future Development of 500W LPP Source
 - Summary

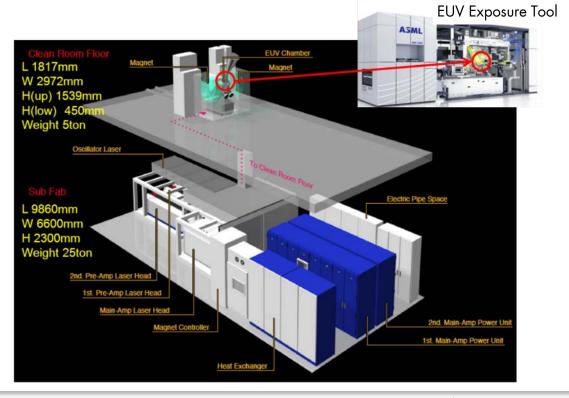
AGENDA

Gigaphoton's LPP Light Source Concept

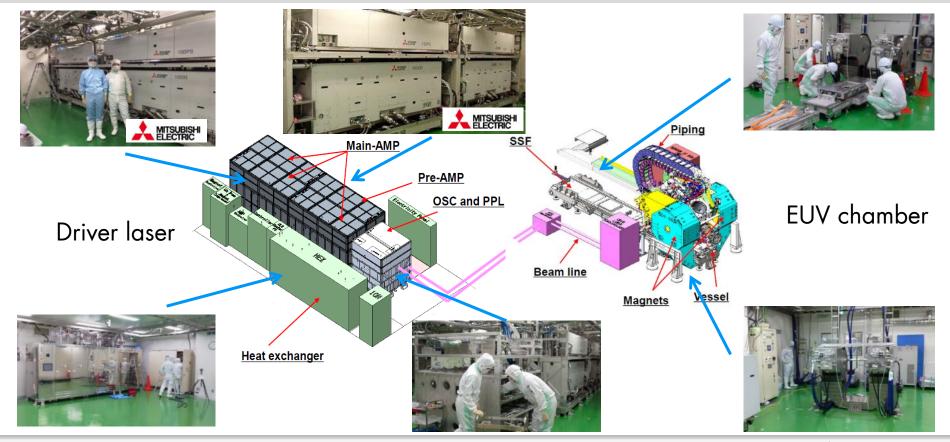
- High ionization rate and CE EUV tin (Sn) plasma generated by CO₂ and pre-pulse solid laser dual wavelength shooting
- Hybrid CO₂ laser system with short pulse high repetition rate oscillator and commercial cwamplifiers
- Accurate shooting control with droplet and laser beam control
- Tin (Sn) debris mitigation with a super conductive magnetic field
- High efficient out of band light reduction with grating structured C1 mirror

Pilot and Proto Systems Configuration

Target System Specification


Operationa	Il Specification	Pilot #1	Proto #1	Proto #2	
	EUV Power	250 W	25 W	> 100 W	
	CE	4%	3%	3.5%	
	Pulse rate	100 kHz	100 kHz	100 kHz	
Target Performance	Output angle	62°upper (matched to NXE)	Horizontal	62°upper (matched to NXE)	
	Availability	> 75%	1 week operation	1 week operation	
	Droplet generator	< 20 µm	20 – 25 μm	20 µm	
	CO ₂ laser	27 kW	5 kW	20 kW	
Technology	Pre-pulse laser	picosecond	picosecond	picosecond	
	Debris mitigation > 3 month		validation of magnetic mitigation in system	10 days	

Pilot #1 EUV Light Source for HVM


Layout of 250W EUV Light Source

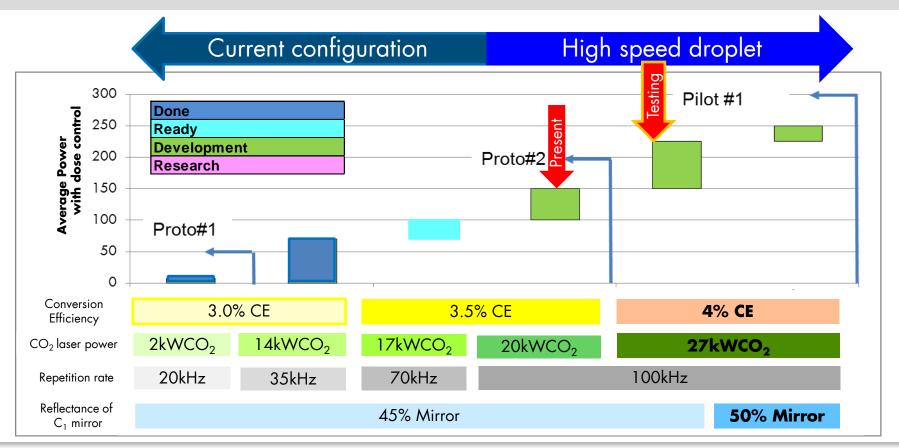
First HVM Source will be 250W

Оре	rational speci (Target)	HVM Source				
	EUV Power		> 250W			
Perform	CE		> 4.0 %			
ance	Pulse rate		100kHz			
	Availability		> 75%			
	Droplet generator	Droplet size	< 20mm			
Techno	CO2 laser	Power	> 20kW			
logy	Pre-pulse laser	Pulse duration	psec			
	Debris mitigation	Magnet, Etching	> 15 days (>1500Mpls)			

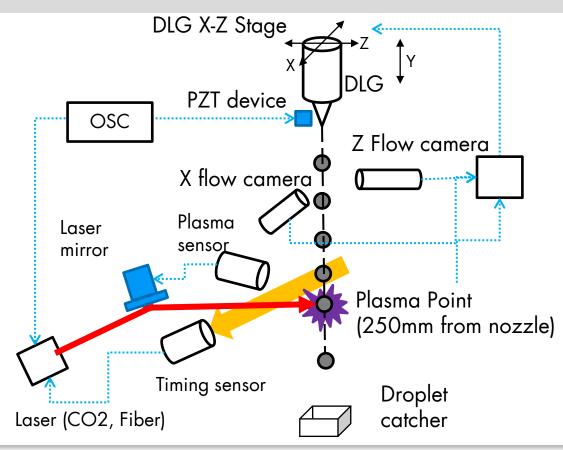
Pilot #1: Picture of construction (2015.6 - 2016.1)

June 15, 2016 EUVL Workshop 2016

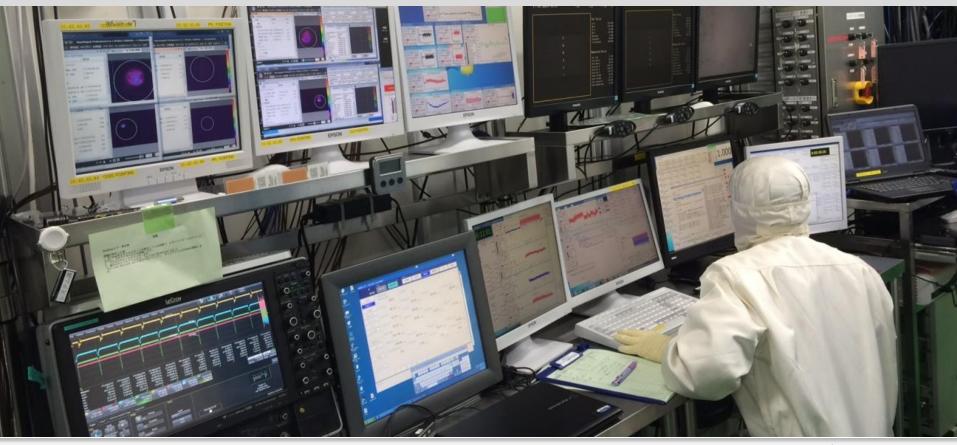
Pilot #1: Construction is Completed ! (2016.02)


EUV chamber and Magnet

CO₂ driver laser system

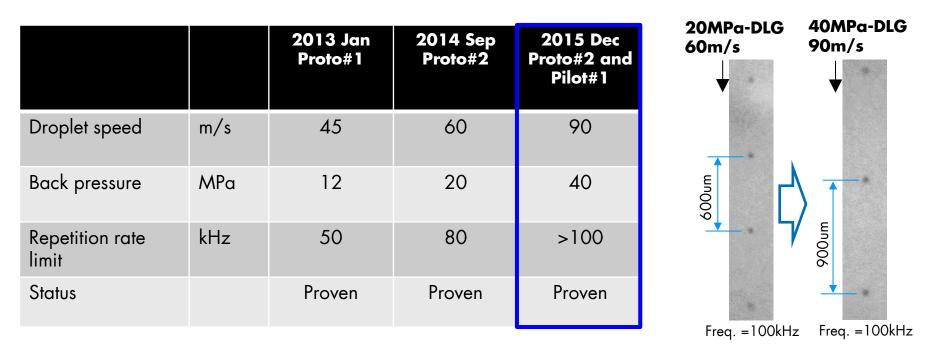


Power-up Scenario



June 15, 2016 EUVL Workshop 2016

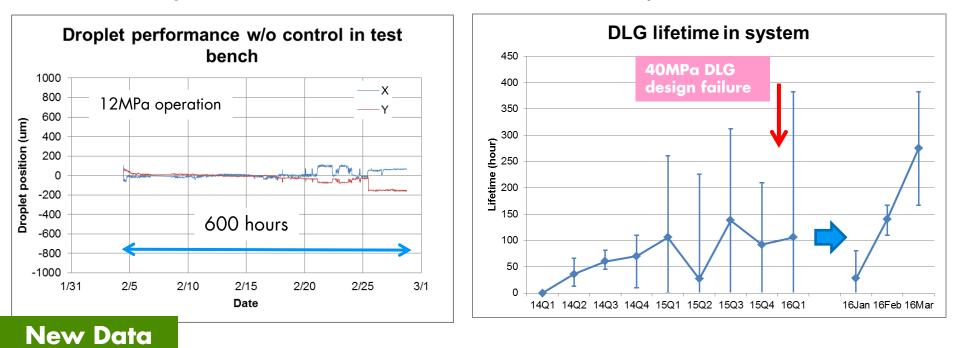
LPP EUV Source : Shooting Control System



LPP EUV Source: Operation Desk

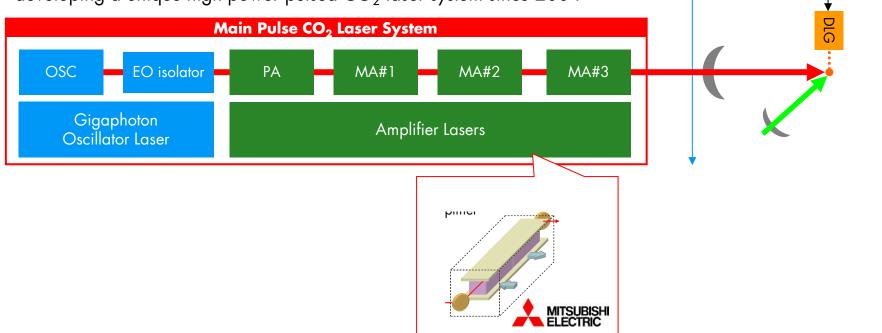
Droplet Generator technology (1)

High speed droplet generator was successfully released to Proto system


<u>Droplet Status</u>

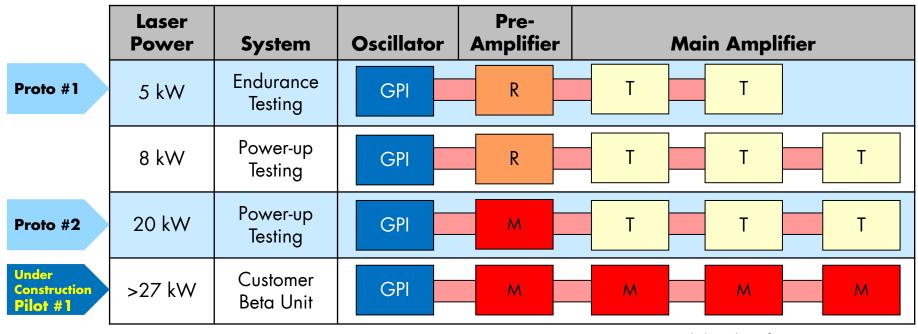
New Data

Droplet Generator technology (2)


- 600 hours lifetime in 12MPa was confirmed in test bench.
- Average lifetime in 40MPa is 260 hours at present.

High Power CO2 Laser Technology (1)

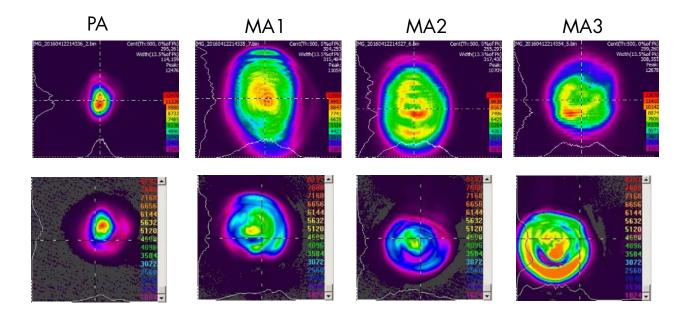
Driver Laser System


Gigaphoton, in cooperation with $CW-CO_2$ laser companies, has been jointly developing a unique high power pulsed CO_2 laser system since 2004

Timing

Controller

High Power CO₂ Laser Technology



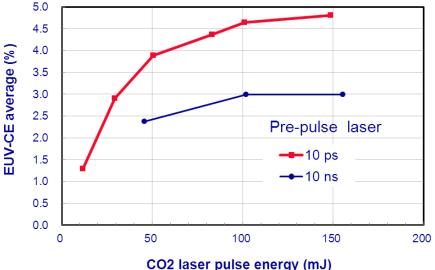
validated performances at system

Pilot #1: CO₂ Laser System is Ramping-up (Apr.2016)

CO2 Laser system beam profile in Pilot#1 is dramatically improved. It will contribute higher CE operation

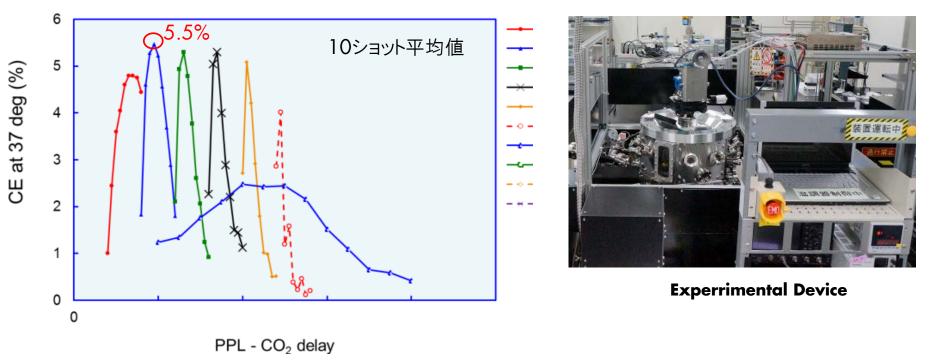
Pilot#1

Proto#2



Pre-Pulse Technology (1)

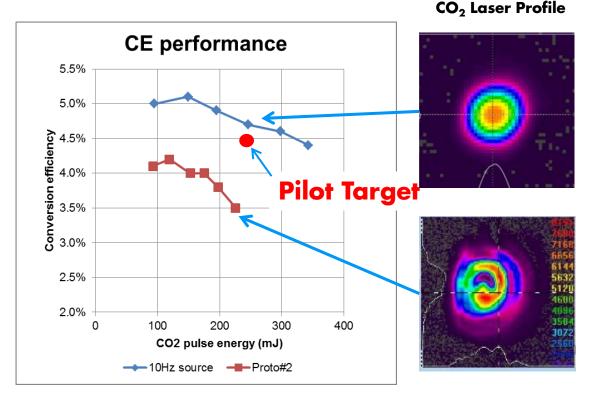
- Based on basic physical consideration and experiments, Gigaphoton has chosen to adopt the pre-pulse technology since 2009
- In 2012 Gigaphoton discovered that shortening the pre-pulses duration dramatically enhance the conversion efficiency



CO2 pulse enegy vs. EUV-CE

Pre-Pulse Technology (2)

In small experimental device, we observed **5.5% CE** under optimized condition.**17 % increase** from old champion data (CE=4.7%).

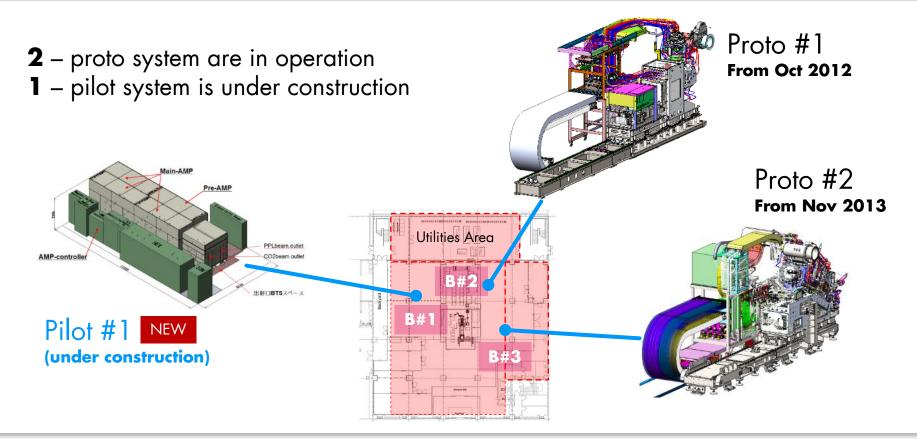

Pre-Pulse Technology (3)

Issue

 » CE in Proto#2 is 1% lower than 10Hz source. This would be due to CO2 laser beam inhomogeneity.

Next Step

» CO2 laser beam homogeneity would be improved in Pilot#1 system.

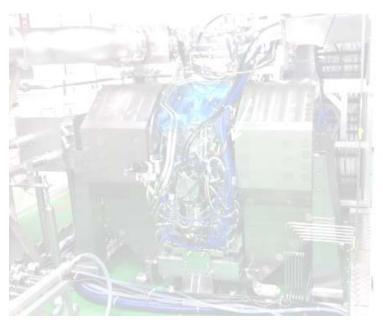

26

New Data

- Issue of EUV Light Source and History of Source Power-Up
- 250W Pilot System Development Update
 - Key Component Technologies Update
- Prototype LPP Source Systems Experiment Update
 - Proto Device #1
 - Proto Device #2
- For Future Development of 500W LPP Source
- Summary

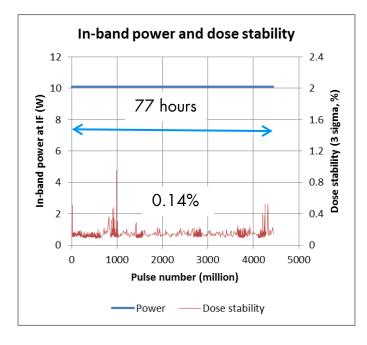
AGENDA

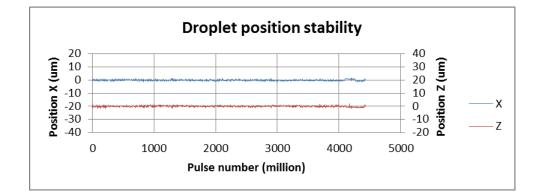
Gigaphoton EUV Sources

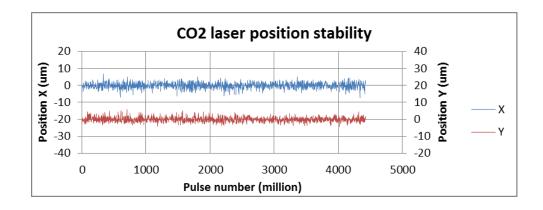

Gigaphoton's High Power EUV Light Source

Prototype high power EUV light source is in operation

Proto 1 Exposure & Mitigation test

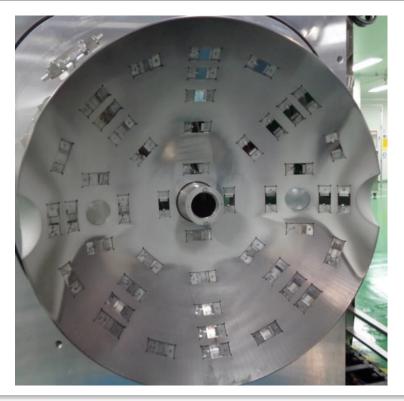



Proto 2 High power Experiment



Long Lifetime Operation in Proto#1 System

77 hours operation with 25% dose margin

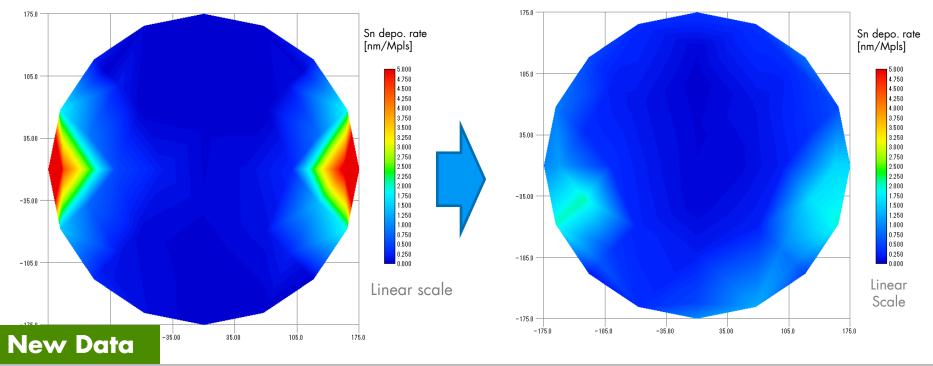


Proto#1: Sampling Evaluation

Measurement of Sn deposition distribution at recent Proto#1configuration

Purpose

» Evaluation of tin deposition distribution on the collector mirror

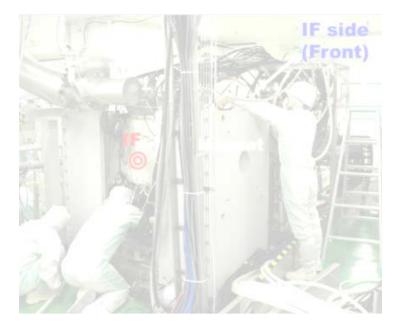

Method

- dummy collector mirror (no coating)
- sampling plate
 size: 15mmx15mmx0.7mmt
 material :Si plate (46 pieces)
- Analysis after test
 - » surface condition :SEM
 - » deposited tin thickness :XRF

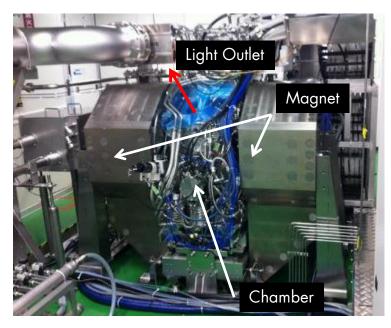
Proto#1: Comparison of tin Deposition Distribution

Mapping of Sn deposition distribution (measured data) at recent Proto#1configuration

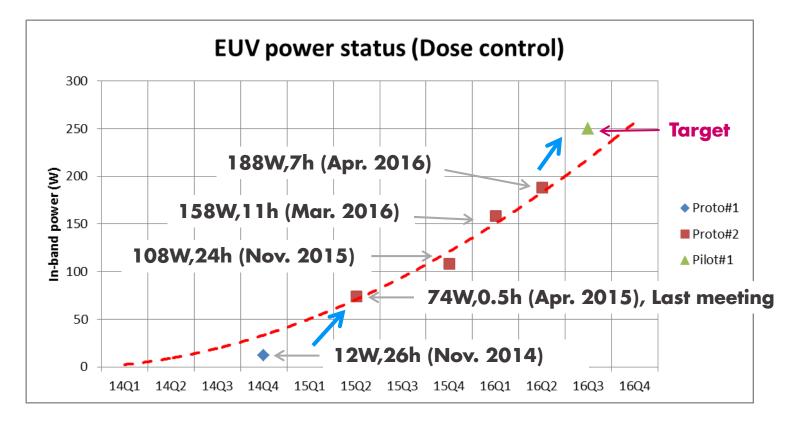
P#1(2015.08)

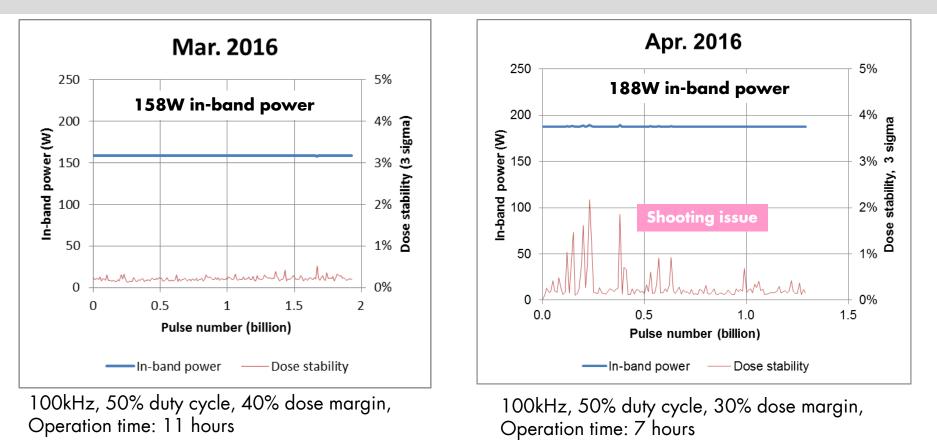


P#1(2016.01)

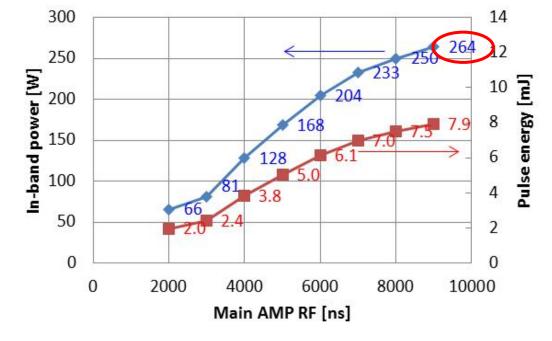

Gigaphoton's High Power EUV Light Source

Prototype high power EUV light source is in operation


Proto 1 Exposure & Mitigation test

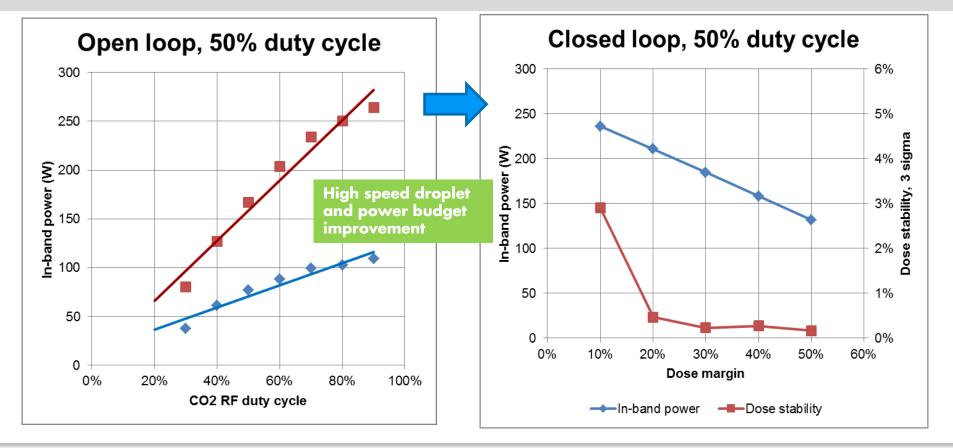

Proto 2 High power Experiment

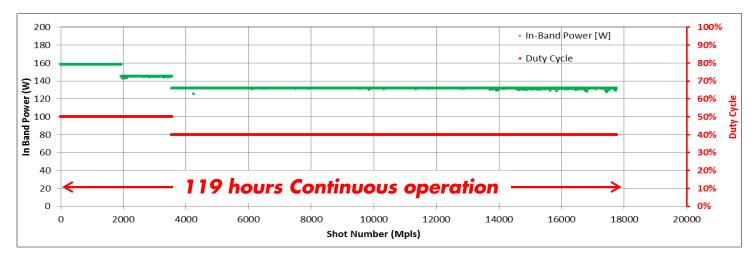
Power Status



High Power Operation (Proto#2)

Proto #2: Power Data 1 (Mar. 2, 2016 data)


RF - EUV


- Maximum power 264W (In-burst)
- Open Loop

New Data

Proto #2: Power Data 2 (Mar. 2, 2016 data)

Proto #2: Power Data 3 (Mar. 3-17, 2016 data)

Result:

In-band power:158W-132WOperation time:119 hNumber of Pulse:>17.8 BplsDose stability3σ:< 0.19 %</td>

Condition:

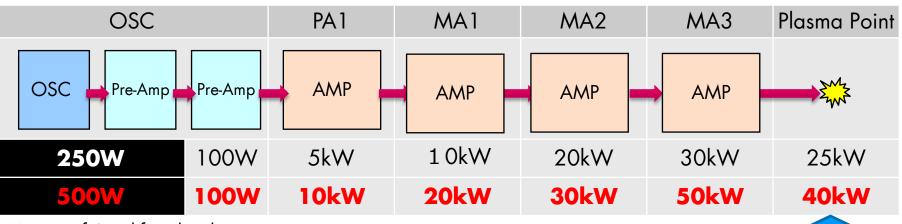
Repetition rate:100kHzDuty:40/50% *Average power:79W-52WWith dose control mode* 10 kpls on/0.15 or 0.1s off

Technology History and Future Scenario

- 24hours operation with 108W average power was confirmed
- Next target of Proto#2 is 200W、Target of Pilot #1 is 250W, 1week continuous operation until June 2016

		Ste	atus		Target			
	Feb 2015	Apr 2014	Dec 2016	Mar 2016	May 2016	Jun 2016	Dec 2016	
System	Proto#1	Proto#2	Proto#2	Proto#2	Proto#2	Pilot#1	Pilot#1	
In band power	10W	74W	108W	158/132W	200W	250W	250W	
Average power at IF dose control	8W	70W	54W	79/52W	100W	250W	250W	
Operation time	77hour	0.5hour	24hour	119hour	> 100hour	>1week	>1month	
Duty cycle	80%	95%	50%	50/40%	>50%	100%	100%	
Repetition rate	20kHz	35kHz	80kHz	100kHz	100kHz	100kHz	100kHz	
CO2 power at plasma	1.1kW	10kW	14kW	15kW	17kW	>23kW	>23kW	
CE	3.2%	3.2%	3.5%	3.5%	3.5%	4.0%	4.0%	
Power budget from plasma to IF	31.6%	31.6%	31.6%	31.6%	31.6%	35.1%	35.1%	
Dose margin	25%	20%	40%	40%	20%	20%	20%	
Availability based on 24x7	13.5%	5.3%	>20%	>30%	>50%	>60%	>90%	

- Introduction
- Issue of EUV Light Source and History of Source Power-Up
- 250W Pilot System Development Update
 - Key Component Technologies Update
- Prototype LPP Source Systems Experiment Update
 - Proto Device #1
 - Proto Device #2
 - For Future Development of 500W LPP Source
 - Summary


AGENDA

Extendibility to 500W EUV Power

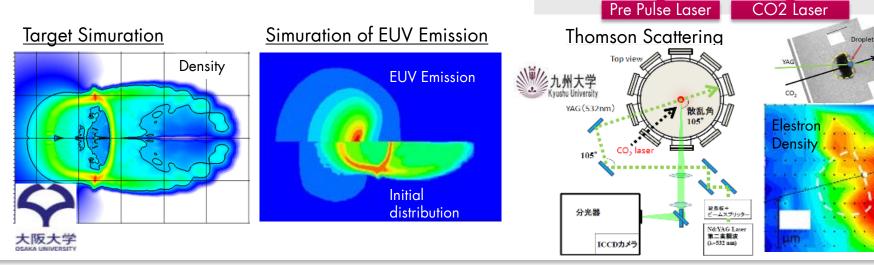
Possible scale up scenario of EUV Output Power vs. CO₂ Input Power

E	EUV ave.Power[W]		ver[W]	Conversion Efficiency [%]												
	@10	0kH	z	2%	3%	4%	5%	<mark>6%</mark>	7%	8%						
	15		1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
	50		5	19.1	28.7	38.2	47.8	57.3	66.9	76.4						
	100		10	46.4	69.6	92.8	116.0	139.2	162.4	185.6						
	150		15	73.7	110.6	147.4	184.3	221.1	258.0	294.8						
	200		20	101.0	15,5	202.0	252.5	303.0	353.5	404.0	Our noss	e-up scenario				
	250	$\overline{}$	25	128.3	192.5	256.6	320.8	384.9	449.1	513.2		ible scul				
[Lm]	300		30	155.6	233.4	311.2	389.0	466.8	544.6	622.4						
	350	er	35	182.9	274.4	365.8	457.3	548.7	640.2	731.6						
gy S	400	۸o	40	210.2	315.3	420.4	525.5	630.6	735.7	840.8						
Energy	450		45	237.5	356.3	475.0	593. <u>8</u>	712.5	831.3	950.0						
	500	ave	50	264.8	397.2	529.6	662.0	794.4	926.8	1059.2		HVM	HVM	HVM		
laser	550	er s	55	292.1	438.2	584.2	730.3		1022.4	<u>1168.4</u>		(1 st)	(2 nd)	(3 rd)		
2 18	600	ası	60	319.4	479.1	638.8	798.5	958.2	1117.9	1277.6						
C02	650	21	65	346.7	520.1	693.4	866.8	1040.1	1213.5	1386.8	EUV power	250W	500W	1000W		
Ŭ	700	8	70	374.0	561.0	748.0	935.0	1122.0	1309.0	1496.0	_0 / po//o.	20011				
	750		75	401.3	602.0	802.6	1003.3	1203.9	1404.6	1605.2	Pulse Rate	100 kHz	100kHz	100kHz		
	800		80	428.6	642.9	857.2	1071.5	1285.8	1500.1	1714.4						
	850		85 90	455.9	683.9	911.8	1139.8	1367.7	1595.7	1823.6	CE	4%	5%	6%		
	900		90 95	483.2 510.5	724.8 765.8	<u>966.4</u> 1021.0	<u>1208.0</u> 1276.3	1449.6 1531.5	<u>1691.2</u> 1786.8	<u>1932.8</u> 2042.0	CL	4/0	70	070		
	950 1000		95 100	537.8	806.7	1021.0	1344.5	1613.4	1882.3	2042.0	CO ₂ Laser	25kW	40kW	65kW		
	1000		100	007.0	000.7	1075.0	1044.0	1013.4	1002.3	2101.2	-	20114		USKVV		
											Power					

High Power CO₂ Laser System

<History of Amplifier development>

Copyright © 2016 Gigaphoton Inc.


Carbolated with

Log n

High EUV Conversion Efficiency

Thin Target

φ10~50µm

EUV Emission

Mist

φ100~500µm

- Introduction
- Issue of EUV Light Source and History of Source Power-Up
- 250W Pilot System Development Update
 - Key Component Technologies Update
- Prototype LPP Source Systems Experiment Update
 - Proto Device #1
 - Proto Device #2
- For Future Development of 500W LPP Source
- Summary

AGENDA

Summary

• Recent Topics of LPP Source component technologies are reported.

Pilot #1 is starting operation

- » Construction has finished at Feb. 2016.
- » Now we are starting CO2 driver laser power test up to 20kW.
- » First data will be expected in July 2016.
- Progress of Proto #1 unit
 - » Further improvement of "Magnetic debris mitigation"
 - » Magnetic mitigation capability is discussed by using Tin distribution measurement.
 - » Up time is improved dramatically current 6 month. Utilize test for EIDEC
- Progress of Proto #2 unit
 - » 264W in-bound Power was demonstrated.
 - » 119 hours 158-132 W power (in burst) under closed loop stable operation was successfully demonstrated
- Discussion of 500W Light Source

Acknowledgements

Thanks for co-operation:

Mitsubishi electric CO₂ laser amp. develop. team: Dr. Yoichi Tanino*, Dr. Junichi Nishimae, Dr. Shuichi Fujikawa and others.

* The authors would like to express their deepest condolences to the family of Dr. Yoichi Tanino who suddenly passed away on February 1st, 2014. We are all indebted to his incredible achievements in CO₂ amplifier development. He will be missed very much.

Dr. Akira Endo :**HiLase Project** (Prague) and Prof. Masakazu Washio and others in **Waseda University** Dr. Kentaro Tomita, Prof. Kiichiro Uchino and others in **Kyushu University** Dr. Jun Sunahara, Dr. Katsunori Nishihara, Prof. Hiroaki Nishimura, and others in **Osaka University**

Thanks for you funding:

EUV source development funding is partially support by NEDO(New Energy and Industrial Technology Development Organization) in JAPAN

Thanks to my colleagues:

EUV development team of Gigaphoton; Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida,Tsuyoshi Yamada, Taku Yamazaki, Takashi Saitou and other engineers.

THANK YOU

