

Free-electron lasers: beyond EUV Lithography Insertion Erik R. Hosler, Obert R. Wood II

EUV Source for HVM – State of the Art

- Laser-produced plasma source
 - High-power CO₂ laser
 - Sn droplet source
 - Feedback and control systems
- ASML/Cymer
 - 125 W sources deployed to customers
 - ~200 W on test benches
- Gigaphoton
 - Sn debris mitigation strategy, robust drive laser
 - 133 W (in-burst) @ 100 kHz
- 'When', not 'if'
 - Insertion discussed @ 7nm 2018/2019
 - No longer 'an exercise'

Pirati, A., et al. SPIE Proc. EUVL, 2016. Purvis, M., et al. SPIE Proc. EUVL, 2016. Okazaki,S., et al. ICXRL. 2016.

Is there still a case for EUV FELs? What needs to be done from here?

E.R. Hosler, O.R. Wood, W.A. Barletta, P.J.S. Mangat and M.E Preil, Considerations for a free-electron laser-based extreme-ultraviolet lithography program. Proceedings of SPIE 9422, Extreme Ultraviolet (EUV) Lithography VI. 94220D. 2015.

Extreme-Ultraviolet Lithography High-Volume Manufacturing

- EUV for N5 N3 and beyond: high-NA or multi-patterning?
- N5 N3 lithography requirements[†]
 - 5-10+ 10+ EUV single exposure layers
 - Dose >50 mJ/cm²
 - $2k \rightarrow 5k+$ wafer starts per day

► N3 requires an EUV source power ~500→1000 W

- High availability/reliability and throughput
- Free-Electron Lasers (FELs)
 - Potential for deployment by 2022-2024 2024

⁺ IMEC Technology Roadmap van Schoot., J., et al. EUVL 2015. Maastricht, Netherlands Hosler, E.R., et al. SPIE Proc. EUVL. 2015.

High-NA EUV Scanner Throughput

Free-Electron Lasers HVM N3

Dose Scaling with Technology and Wafer Throughput

- As target dimensions shrink
 - − High-NA option \rightarrow higher dose
 - − NA 0.33 \rightarrow EUV multi/self-aligned patterning
- Challenge of the middle-of-the-line (MOL)
 - ~2x mask increase per technology generation
 - OVL and Alignment
 - Self-aligned techniques (SAxP) + cuts
 - Design and Process Complexity
- EUV can reduce the number of cut, contact and via masks
 - Must be cost competitive

The Most Important Thing...

<u>Cost!</u>

- Lower cost per kW
- An EUV FEL must power multiple scanners simultaneously
- FEL EUV source must operate with an availability of 100%
 - 10x 95%...not adequate...
 - Two FELs must be run simultaneously!
 - Redundancy of high-risk/low-cost machine components
 - Minimizing stress on long replacement time components
- No debris generation
- Potential for turn-key operation

(\$M)		10x 250 W LPP Sources	EUV ERL FEL (10x Scanners Powered @ 1 kW)
Cost to Power 10 Scanners	OpEx	85	23
	CapEx	256	240
	Total Cost First Year	>341	263
	FEL CapEx Savings		<u>16</u>
	FEL Yearly OpEx Savings		<u>62</u>
Uptime Per Source		Target 90%	~100%
Average Exposures Per Day (10 Scanners, Dose: 25 mJ/cm ² , 120 Fields)		13,280	29,700

E.R. Hosler, O.R. Wood, W.A. Barletta, P.J.S. Mangat and M.E Preil, Considerations for a free-electron laser-based extreme-ultraviolet lithography program. Proceedings of SPIE 9422, Extreme Ultraviolet (EUV) Lithography VI. 94220D. 2015.

GLOBALFOUNDRIES Public 7

An EUV FEL for Lithography

- Joint paradigm shift
 - FEL not for the single user...
 - Lithography tool does not have a single source...
- Single purpose facility
 - Support entire EUV lithography sector
 - No need for adjustable wavelengths
 - Need high-average power
 - Minimal coherence, maximum divergence

Pulse duration

- No strict requirement for lithography...besides avoiding ablation
- Necessarily short as a result of FEL efficiency
- Long pulse duration EUV FEL emission will increase optics lifetime → limit peak power
- Scaling to 6.x nm?
 - Necessary changes in exposure equipment, mask blanks and mirror may represent an economic roadblock
 - EUV self-aligned techniques or multi-pattering

Considerations for a free-electron laser-based extreme-ultraviolet lithography program

Erik R. Hosler*^a, Obert R. Wood II^a, William A. Barletta^b, Pawitter J. S. Mangat^a, and Moshe E Preil^c ^a GLOBALFOUNDRIES, 400 Stone Break Road Extension, Malta, NY 12020 ^b Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 ^c GLOBALFOUNDRIES, 2600 Great America Way, Santa Clara, CA 95054

Need for a Scorecard...

- A free-electron laser-based EUV lithography program may be the most economical means for HVM operation
 - Line edge/width roughness and CD requirements for future technology nodes may require high-dose resists
- Choice of free-electron laser emission architecture will impact HVM lithography operations
 - Stability of accelerator, undulator, and other sub-systems will affect overall machine performance
- FEL-Lithography scorecard is outlined
 - SIMPLEX is utilized to explore the FEL emission architecture parameter space

Development of a Lithography-based FEL Scorecard

- Evolving evaluation of various FEL options
- FEL emission architecture will drive different bounds
 - SASE: self-amplified spontaneous emission
 - SS: self-seeding
 - RAFEL: regenerative amplifier FEL
- FEL requirements will drive machine specifications
- Lithographers ↔ Accelerator/FEL Physicists
 - Scorecard needs to be re-evaluated for each accelerator and FEL configuration

	Metric	Bounds
	Acc.; e ⁻ Beam Pointing Stability	± x μm
	RF Power/Frequency Stability	± <mark>x</mark> W, ± <mark>x</mark> GHz
	e ⁻ Beam Energy	± x dE/E
	FEL; e ⁻ Beam Pointing Stability	± x μm
	Magnetic Field	± %Κ, δΚ, δ²Κ, φ
	Emittance Degradation	± <mark>%Δε</mark> mm mrad
L	EUV/e ⁻ Beam Matching	± e⁻ BL/ <mark>x</mark>
	Output Pointing Stability	± x μm
	Peak Intensity Maximum	x W/cm ²
	Output Pulse Energy	± <mark>x</mark> μJ

FEL Emission Architecture – Base Configuration Comparison

- SASE has the most rapid build-up
- SS gives the most narrow output spectrum
 - All outputs are well within the standard EUV Mo/Si multi-layer mirror bandwidth
- Photon flux spatial distribution is similar for all cases

Power Build-up Comparison

11

Evaluation of planned Lithography-based FEL Scorecard

- Baseline FEL emission architecture were defined and are currently being explored in detail
 - SASE
 - Evaluated for several parameters, more robust to fluctuations, higher variation in photon energy
 - **SS**
 - Improve monochromator design, evaluate similar parameters as with SASE
 - More sensitive to fluctuations
 - More critical parameters
 - RAFEL
 - Investigate feedback physics: explanation for not attaining steady-state power output
- As evaluation progresses, launch discussions with equipment suppliers and existing light source operators
- Lithographers ↔ Accelerator/FEL Physicists

Metric	Bounds
Acc.; e ⁻ Beam Pointing Stability	± <mark>x</mark> μm
RF Power/Frequency Stability	± <mark>x</mark> W, ± <mark>x</mark> GHz
e ⁻ Beam Energy	± 0.25% dE/E
FEL; e ⁻ Beam Pointing Stability	± <mark>x</mark> μm
Magnetic Field	± 2E-4% , δK, δ ² K, φ
e ⁻ Bunch Emittance	ε < 0.3 mm mrad
EUV/e ⁻ Beam Matching	± e ⁻ BL/3
Output Pointing Stability	± <mark>x</mark> μm
Peak Intensity Maximum	x W/cm ²
Output Pulse Energy	± x μJ

Configuration Pitfalls

- SASE
 - Wavelength instability
 - Power instability
- Self-seeding
 - Amplification instability
 - Power instability
- RAFEL
 - Untested in the EUV
 - Optics survivability _
- All modes
 - Coherence breaking
 - RF instabilities

N. Harned, S. Roux, P. Ware, and A. Tanimoto. Progress Report: Engineers take the EUV lithography challenge OEMagazine. DOI: 10.1117/2.5200302.0003. 2003.

FEL Development Timeline Progress

Keens, S.G., Rossa, B., Frei, M., Free-electron lasers for 13nm EUV lithography: RF design strategies to minimise investment and operational costs. Proceedings of SPIE 9776, Extreme Ultraviolet (EUV) Lithography VI. 97760T. 2016. Pina, L. EUV Source Workshop. 2014.

KEK cERL for EUV-FEL

- Use of existing technology
 - Expertise in ERL
 - Superconducting Test Facility @ KEK
- Existing experimental hall
- Target 10 mA operation
- Phase space modeling of 800 MeV e⁻ beam recirculation
- Predict ~20 kW @ 10 mA with 8% tapering
- Update by Ryukou Kato (P43)

Driving toward an industrial EUV FEL

- Success is two fold dependent
 - Development of new technology
 - Acceptance
- FEL/Accelerator Paradigm Shift
 - Power and availability are king
 - Single to many end stations
- Any development program must have a governance body
 - Semiconductor manufacturers
 - EUV Scanner Supplier(s)
 - Accelerator/FEL Research Team

Thank you!

Erik.Hosler@GLOBALFOUNDRIES.com

518-292-7412

© 2014 GLOBALFOUNDRIES Inc. All rights reserved.