EUV MASK MANUFACTURING:

PATTERNING AND BLANK STATUS

BRYAN S. KASPROWICZ, HENRY KAMBERIAN PHOTRONICS, INC.

OUTLINE

Patterning Challenges

- Target Requirements
- Mask Manufacturing Modules
- Resist Process Selection and Results

Imaging Considerations

- EUV Reflectivity
- Black Border

EUV Blanks

Evolution and Cost

Summary

PATTERNING CHALLENGES

Tightening Mask Process Targets

Mask Attribute	Targets
CD (nm)	$64 \rightarrow 44$
SRAF (nm)	$\sim 40 \rightarrow \sim 25$
CD MTT (nm)	3.0 ightarrow 2.0
Global CD Uniformity (nm)	2.5 → 1.5
Linearity Target (MFS to 500nm)	≤ 3
Proximity Target (1:1 to Iso; nm)	≤ 1.5
LER Target (3σ; nm)	≤ 2.5
Absorber SWA (°)	85° - 90°

EUV MASK MANUFACTURING MODULES

Module	$10nm \rightarrow 7nm \rightarrow 5nm$
Blank Materials	 Defectivity Absorber material & stack optimization
Blank Inspection	 Surfaces and backside Native defect mitigation
Mask Patterning	 Resist materials and Etch Resolution CD control
Cleaning	 Absorber etch rate Surface conditions Backside Cleaning Cleaning efficiency Pattern damage EUV Reflectivity (ML, Cap, Absorber)
Metrology	 Pattern Placement CD, LER and SWA EUV Reflectivity
Inspection	 DUV and ebeam Inspection algorithms Defect capture rate
Repair	 Mechanical, Ebeam, Ion beam Repair accuracy
Defect Review	 Defect Repair Verification Disposition process flow Printability (wafer print, simulation)

EUV MASK PATTERNING: PCAR PROCESS RESULTS

RESOLUTION, LINEARITY AND LER – PCAR

60nm Isolated Line

60nm Dense Line

46nm Isolated Space

RESOLUTION, LINEARITY AND LER – PCAR

L/S	60nm	56nm	52nm	48nm
CD Mean (nm)	56.5	51.8	47.4	42.3
CD MTT (nm)	-3.53	-4.16	-4.64	-5.69

	64nm Line H	64nm Space V
CD Mean (nm)	66.9	61.9
CD MTT (nm)	2.88	-2.20
CDU (nm, 3σ)	2.85	2.92

60nm L/S	56nm L/S	52nm L/S	48nm L/S

N7 LOGIC DESIGN - PCAR

CD–Space (nm)	69
Count	861
Axis	Х
Mean	70.25
MTT	1.25
CDU (3Ծ)	3.01
Mean 3 σ LER	3.31
LER Variation (3σ)	1.74
CD: 69nm Space (X)	Column 3 <= 67.500 <= 68.000 <= 69.000 <= 69.500 <= 70.500 <= 71.500
Column 1	

CD–Space (nm)	75
Count	861
Axis	Y
Mean	78.14
MTT	3.14
CDU (3ஏ)	2.95

CD–Space (nm)	113
Count	861
Axis	Х
Mean	111.29
MTT	-1.71
CDU (3♂)	2.91
Mean 3 σ LER	2.99
LER Variation (3 σ)	1.61

EUV MASK PATTERNING: NCAR PROCESS RESULTS

RESOLUTION, LINEARITY AND LER – NCAR

PHOTRONICS

RESOLUTION, LINEARITY AND LER - NCAR

ADVANCED TEST MASK - NCAR

PHOTRONICS

IMAGING CONSIDERATIONS: EUV REFLECTIVITY

EUV REFLECTIVITY

Single mask, 400 locations

Multi-Layer Property	Specifications	Product Mask
CTW50 (nm)	13.53	13.534
Mean center wavelength shift [%]	< ± 0.05	0.027
Mean FWHM of reflectivity vs wavelength [nm]	> 0.5	0.55
Max. range of bandwidth @FWHM [nm]	0.01	0.009
Max. range of centroid wavelength [nm]	0.06	0.027
Mean peak reflectivity [%]	≥ 62	63.5
Max. range of peak reflectivity [%}	< 1.4	1.0
		-
Absorber Property	Specifications	Product Mask

Absorber Property	Specifications	Product Mask
Reflectivity averaged over wavelength range (13.395 - 13.665 nm)	< 0.5	0.5

ML Reflectivity Specifications: Mean peak reflectivity: ≥ 62% Max. range of peak reflectivity: < 1.4%

13 Product Masks

ML Reflectivity: Avg_{13 masks} = 62.85% Range_{Avg} = 0.55

AB Reflectivity: Avg_{13 masks} = 0.59%

IMAGING CONSIDERATIONS: BLACK-BORDER PROCESS

BLACK BORDER AND EUV DUV OOB REQUIREMENTS

Attribute	Specification
Placement tolerance	± 100 nm
Width Uniformity (3σ)	200 nm
Side wall angle (SWA)	90° ± 5°
Out of Band Reflectivity (OOB R) Avg. A 100 - 280nm (steps of 5 nm)	≤ 2.0%
Out of Band Reflectivity (OOB R) Max. A 100-280nm (steps of 5 nm)	≤ 10.0%
Out of Band Reflectivity (OOB R) avg. A 100-200nm (steps of 5 nm)	≤ 3.0%
EUV Reflectivity λ12.8-14.2nm (EUV R) max.	≤ 0.05%

REGISTRATION – PRE – BB

Summary	X [um]	Y [um]
Mean	0.00000	0.00000
Max 3 S.D.	0.00481	0.00690
Min	-0.00642	-0.00711
Max	0.00501	0.00683
Scale:	-0.18139 / -0.24419 [ppm]	
Ortho:	0.00898 [10^-6 rad]	

REGISTRATION – POST – BB

<u>Summarv</u>	<u>X [um]</u>	<u>Y [um]</u>	
Mean	0.00000	0.00000	
Max 3 S.D.	0.00485	0.00670	
Min	-0.00649	-0.00679	
Max	0.00511	0.00661	
Scale:	-0.17014	/ -0.24111 [ppm]	
Ortho:	0.00006	[10^-6 rad]	

EUV PROCESS CAPABILITY – BB BORDER

VUV/DUV OoB Reflectivity Suppression Methodology

• Developed a new BB process

Simulation shows methodology works and would meet requirements

BB process without any reflectivity suppression

350

BLANKS: EVOLUTION AND COST

EUV BLANK COMPOSITION – CURRENT MATERIALS

AR laver: Ta-based (2nm - 14nm) Main layer: Ta-based (51nm - 76nm)

Conductive Layer: CrN (20nm or 360nm)

Thinner Absorber stack driven by:

- **Resolution requirements on mask**
- **Mitigation of Mask 3D effects**

Besides defectivity (ML, Abs, etc.) other blank properties are tightened which impact overall blank costs...

- Substrate flatness and Bow
- Absorber thickness control and uniformity
- **Centroid wavelength control and uniformity**
- **Backside defectivity**

EUV BLANK COMPOSITION – CURRENT MATERIALS

EUV Mask Requirements

- Mask Pattern specifications are getting more challenging, but perhaps achievable with current infrastructure
 - SRAF's are driving resolution

Mask Patterning Requirements

- Dual resist strategy to manage multiple mask layer types
 - NCAR process performance has improved resolution and LER performance, but at the expense of write time
- EUV reflectivity requires monitoring and process stability
- Novel BB suppression process being demonstrated to help reduce VUV/DUV OoB reflectivity

EUV Blanks

- Defectivity is priority one, but....
- Cost is directly to evolution of material properties and specification targets.
 - Harmonization would help

ACKNOWLEDGEMENT

Photronics Boise nanoFab Engineering Team

Jinju Beineke, Young Cho, David Cho, Peter Craig, Steve Grimmett, Lynn Harned, Shad Hedges, David Jenkins, Austin Johnson, Chris Kossow, Susan MacDonald, Jeremy McCord, Michael Main, David Mellenthin, Chuck Pollock, Craig Wood

THANK YOU FOR YOUR ATTENTION!

