

PROGRESS AND OPPORTUNITIES IN EUV MASK DEVELOPMENT

Ted Liang Intel Mask Operations Intel Corporation

2016 EUVL Workshop (Berkeley, CA, June 16, 2016)

Outline

- EUV masks: Overview and progress
- Pattern inspection
- Pellicle
- Summary

Mask Cycle - a Simplified Flow

- Synergy and adjacency to ArF: Continue to maximize the sharing of existing <u>infrastructure & best known methods</u> developed during years of continuous improvements
- Divergence from ArF: need industry's concerted efforts to tackle the challenges and close any infrastructure & capability gaps

Progress in EUV Mask Fabrication

• EUV masks fabrication in <u>quantity</u> and <u>quality</u> to support EUVL development

~10X increase over 10 years

An N7 VIA test mask

All the 6 defects shown are non-printable

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

BACUS SPIE Photomask Sept. 29, 2015, Monterey, CA

Methods of Pattern Inspections

• DUV lights @193nm: mature platform to support 7nm development

- Near resolution limit for tighter patterns (next slides)
- Not capable for through-pellicle inspection (low transmission)
- E-beam: high resolution, low throughput
 - Useful as a stop-gap capability
 - Not useful for through-pellicle inspection
- Actinic light @13.5nm: a solution with full capability
 - High and extendable resolution: same resolution as the scanner
 - Through-pellicle inspection
 - Detect what matters: same defects as 'seen' by the scanner

EUV Mask Pattern Inspection

- DUV optical platforms continue to provide capability for pilotline
- But, they are near the resolution limit for tighter patterns

Inspection image contrast

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

BACUS SPIE Photomask Sept. 29, 2015, Monterey, CA

Slide shown at BACUS, Sept 2015

íntel.

EUV Mask Pattern Inspection (cont'd)

A closer look: DUV contrast and detection for trench/via •

28nm 1X 20nm 1X 34nm, 1X Absorber

1) Contrast reversal

2) DUV sensitivity loss: intrusion defect (Mask SEM images)

28nm (112nm, 4X)

MI

20nm (80nm, 4X)

	ß	U	ß				
intability:	Yes		Yes		Yes	Yes	
pectability	Yes		Yes	n	narginal	No	

Copyright © 2015, Intel Corporation. All rights reserved *Other names and brands may be claimed as the property of others.

Pr

Insp

Simple test cell

BACUS SPIE Photomask Sept. 29, 2015, Monterey, CA

Actinic pattern inspection

- Inspection wavelength: 13.5nm
- Required sensitivity: detect defects that cause $10\%\Delta$ CD/CD on wafer

Example

0.33NA, annular 60nm Abs Min. printable defect: 17nm (4X)

2016 EUVL Workshop (Berkeley, CA, June 16, 2016)

Actinic pattern inspection (cont'd)

• EUV source readiness remains a high risk for inspection tool development

- Stability in continuous operation
- High brightness (TPT)

The need for high brightness source

- Unlike source for scanner, there is significant étnendue mis-match between the source and imaging system
- >30W/mm²/sr at IF (2hr TPT)
- >40W/mm²/sr for post-pell inspection (85% single pass transmission)

• Source stability for continuous operation, min. > 2 weeks

- Position stability: <10um
- Rep rate: >10kHz
- Power stability: <2% (4msec average)
- Debris mitigation: critical for mask tools
- Availability: >90%

Current sources

• No sources today meeting all the basic requirements simultaneously

Energetiq, 2015 EUV source workshop

	Existing	Proposed
Bore Diameter: mm	6	1
Length: mm	3	2
Pulse Rate: Hz	2.50E+03	5.56E+04
Brightness: W/mm ² .sr	4.5	100
Compressed Diameter: mm	0.4	0.07
Compression Ratio:	15	15
Uncompressed Ion Density	1.77E+21	3.53E+21
Bennet current: A	6.64E+03	1.56E+03
Peak/Bennet	1.05	1.05
Peak current: A	6.99E+03	1.65E+03
Time to Reach Peak Current: s	2.51E-07	4.18E-08
Total Inductance: H	1.90E-08	9.49E-09
Resistance: 0	9.87E-02	9.87E-02
Capacitance: F	2.38E-06	8.96E-08
Voltage: V	-1200	-666
Power to Plasma: W	4.21E+03	1.66E+03

Other Sources...

ETH zürich

2015 EUV source workshop Plasma EUV Source Characteristics (ca 2013)

Parameters	Value
Laser power on target (W)	1100
Laser frequency (kHz)	>6
Laser focal spot size (µm)	70 (FWHM)
Conversion Efficiency (CE)	> 1%
EUV source size (µm)	60 (FWHM)
Source power at the source (W)	>12
Source brightness (W/mm ² sr)	>350

Recent System level advancements:

- · Emission stability using droplet control in both in time and spare
- · Debris mitigated EUV collector and Cleanliness validation of tin-based LPP source after IF
- Characterization of source emission (both radiation and debris) with several plasma diagnostics (Langmuir Probe array, EUV pinhole camera, VUV spectrometer)

Laboratory for Energy Conversion

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

2016 EUVL Workshop

| 11/10/15 | 6

LECT

Updated slide shown at BACUS, Sept 2015

Maximum pellicle temperature vs source power (calculated)

EUV Pellicle is Becoming a Reality

- Prototype full-size pellicle imaging demonstrated on NXE3100 (Dec'14)
 - Nearly 1000 wafers exposed on pelliclized reticles
- NXE full-size pellicle fabrication demonstrated

Zoldesi/ASML: PMJ & EMLC 2015

• Pellicle cleanliness: no printable particles

demonstrated @125W; target 250W

Pellicle Assembly

• Basic set up in place to mount pellicles

EUV Pellicle Metrology Infrastructure

 Basic tool and capability exist today to support pellicle materials development and quality control

Pellicle film inspection

 Inspections demonstrated on multiple pellicles mounted on reticles

Uniformity measurements

- Tool is available for accurate and precise transmission uniformity measurement
- Demonstrated measurements of full-size pellicle @13.50± 0.03nm

100mm x 130mm Measured in every 5mm

Courtesy of EUV Tech

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

EUV Pellicle TWG, San Jose, CA, Feb 21, 2016

Pellicle film for imaging with 250W EUV light

• Spec to be compatible with NXE HVM exposure tool

		Targ	get specificati	ons	Derk Brouns/ASML, 2016 SPIE		
	Product Phase	Transmission	Transmission non-uniformity	Power capability	In parallel, ASML Research investigates		
Pellicle film generations	Prototype	>80%	1%	>40W	le robustness, primarily thermal stance based upon:		
	Pilot	>80%	1%	>125W	raphene/carbon based membranes 6% transmission achieved on carbon based films)		
	Product	88%	0.4%	250W	ew multilayer structures		
	Future	≥90%	0.4%	>250W	 High temperature ceramics as capping and base material 		

• Innovative materials are needed, and readiness to sync with 250W source operation

Messages for 2016:

Still apply today

- Good progress has been made in EUV pellicle development in materials, tooling and infrastructure
 - Pellicle exposure with global transport and handling demonstrated
 - Basic EUV pellicle infrastructure and capability exist today for pellicle materials development and quality control
- Pellicle films capable of long lifetime at 250W EUV remain a critical gap in pellicle implementation for HVM
 - Rapid innovation/invention and development are necessary to intercept schedule
 - Great opportunities exist for engagement in pellicle film production and commercialization

Opportunities in Pellicle Film Innovation

- Si-based films: Si, SiN
 - Protective/high emissivity coating
 - Continue to improve transmission, thermal load, chemical durability in H2+EUV
- **C-based films**: CNT, Graphene
 - High transmission possible
 - Chemically inert Graphene (when perfect)
 - How to make large sheets
 - Mechanical strength/sag, tensile
- Multi-layered films: Si, Zr, Mo
- Structured films

- Overall, Intel mask shop have been delivering defect-free EUV masks to support integrated process development for 7nm technology node
- However, for EUVL in HVM, the following key modules need to be fully developed, hence the opportunity for innovation, notably:
 - Pellicle integration: clean and reliable pellicle film, particle-free mounting
 - High transmission, high power pellicle film is a critical enabler and need to be invented
 - Actinic pattern mask inspection tool development needs to start in parallel with EUVL development
 - Extendable resolution
 - Through-pellicle inspection
 - Reliable and high brightness source is a critical component that needs to be improved to maturity

Acknowledgements

Intel:

Frank Abboud Steve Caron Kishore Chakravorty Sang Lee Clayton Mauldin Brian McCool Mark Phillips Srinath Satyanarayana Britt Turkot Guojing Zhang

ASML EUV Technology

Thank you for your attention!

