Extending CO₂ Cryogenic Aerosol Cleaning for EUV Mask Cleaning (P57)

Ivin Varghese

06/16/2016

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

A Division of ECO-SNOW SYSTEMS

Outline

- Motivation / Cleaning Challenges
- CO₂ Cleaning in Production for Advanced Node Optical Masks
- EUV mask FS cleaning results
- EUV mask BS cleaning results

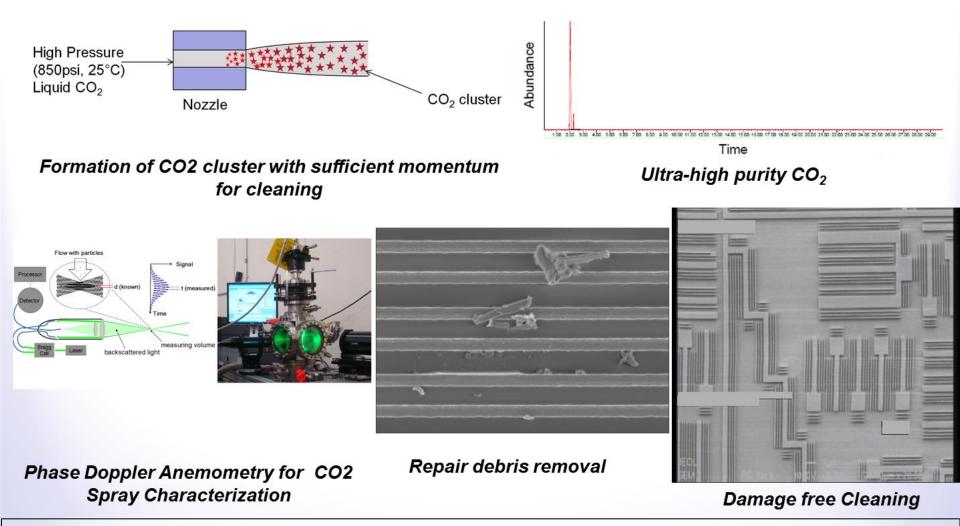
Remarks and Conclusions

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Eco-Snow Confidential

A Division of ECO-SNOW SYSTEN

Motivation / Cleaning Challenges


- Removal of all soft defects (particles)
 - Adhesion forces dominate volume and area proportional forces, hence smaller particles are more difficult to remove
 - BS e-chucked defect removal
 - FS native particle removal
- Zero damage to features on FS (w/o pellicle)
 - Smaller features
 - Higher Aspect Ratio features
- No reduction to mask lifetime due to cleaning
 - Transmission/Reflectivity loss, Phase loss or CD change
 - Haze/progressive defects, ESD
 - No adders

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Eco-Snow Confidential

A Division of ECO-SNOW SYSTE

Overview of CO₂ Cleaning

Optimum Momentum of Ultra-pure CO₂ clusters Cleans Particles and Repair Debris without damage

A Division of RAVE N.P., Inc. | ECO-SNOW SYS

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Overview of CO₂ Cleaning

Why CO₂ aerosol cleaning technique?

- Dry, Chemistry-free process: No mask degradation
 - No haze
 - No loss in transmission/reflectivity, No Phase or CD change
- Unlimited number of cleans: Mask Lifetime extended
 - Compliment traditional cleans
 - Enable new cleans
- Damage-free cleans:
 - No pits
 - No small feature damage
 - No ESD

CO₂ Cleaning has delivered production solutions

ECO-SNOW S

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

EL-C[™] Mask Cleaning Applications

- Wafer fab Mask backside cleaning (with pellicle on)
- Backside Cleaning (mask shop)
- EUV-backside E-chucked defects
- Pre repair clean (differentiates "soft" verses "hard" defects that require repair)
- Post repair (RAVE Merlin[™]) debris cleaning
- Final Clean Capability (pre-pellicle for replacing wet)
- Cleaning of process adders from other tools
- Blank Mask Cleaning
- Front Side Cleaning (next to pellicle)

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

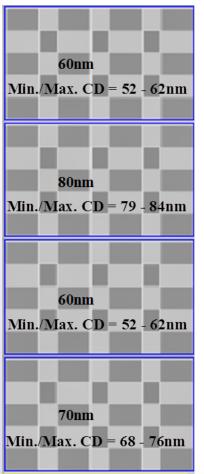
Eco-Snow Confidential

A Division of RAVE N.P. Inc. | ECO-SNOW SYSTEM

Optical Mask Cleaning Data (Production)

For Wafer Fab OHT Capable

For Mask Shop



A Division of RAVE N.P., Inc. | ECO-SNOW SYSTEMS

Damage-free Cleaning Capability

High Aspect Ratios

(up to 2.8)

Aspect Ratios (up to 1.5)

60nm	60nm Min./Max. CD =	60nm 55 - 66.5 nm	60nm
70nm	70nm Min./Max. CD =	70nm 65 - 75 nm	70nm
80nm	80nm Min./Max. CD =	80nm 75 – 85.5 nm	80nm

Dark Assist Features (DAFs) with a stack height of 82 nm

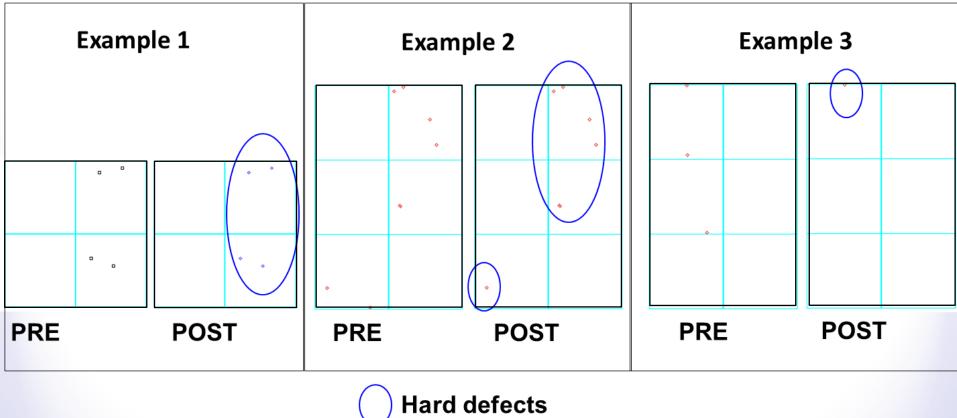
SRAF Damage	N	lozzl	e Heig	ht (a.u.	Data from 2012		
Height and S	16	14	13	11	10	Data from 2013	
	34	1	0	3	5	6	Total No. of Dualian
Average	36	0	0	1	1	1	Total No. of Broken
SRAF Width	37	0	0	0	0	0	SRAFs on entire mask,
(in nm)	40	0	0	0	0	0	after a 2x Full Mask
	42	0	0	0	0	0	CO2 Cleaning

Aspect Ratios (up to 1.75)

Line/Space: Line Width = 40 to 110nm Pitch= 250, 500 and 800

	Pitch							
	X250	Y250	X500	Y500	X800	Y800		
Line width	_							
40	40	40	40	40	40	40		
45	45	45	45	45	45	45		
50	50	50	50	50	50	50		
55	55	55	55	55	55	55		
60	60	60	60	60	60	60		
65	65	65	65	65	65	65		
70	70	70	70	70	70	70		
75	75	75	75	75	75	75		
80	80	80	80	80	80	80		
90	90	90	90	90	90	90		
100	100	100	100	100	100	100		
110	110	110	110	110	110	110		

A Division of RAVE N.P., Inc. | ECO-SNOW SYSTEMS


Damage-free CO₂ Cleaning of SRAFs as small as 37 nm demonstrated on full mask on Optical Mask

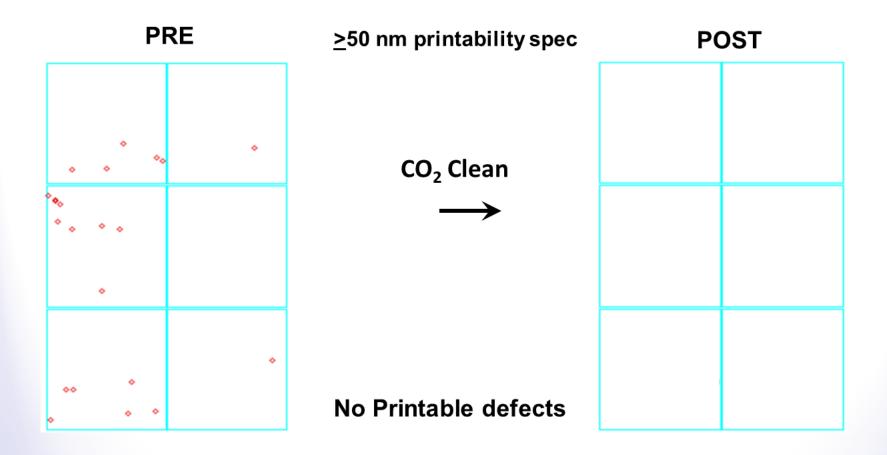
2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Pre-Repair Clean Capability

(differentiates "soft" verses "hard" defects that require repair)

100% Removal of all Printable Debris

- Results showing removal of isolated soft defects on optical masks
- Zero adders and no pattern damage with CO₂
- All remnant particles were hard defects and successfully nanomachined

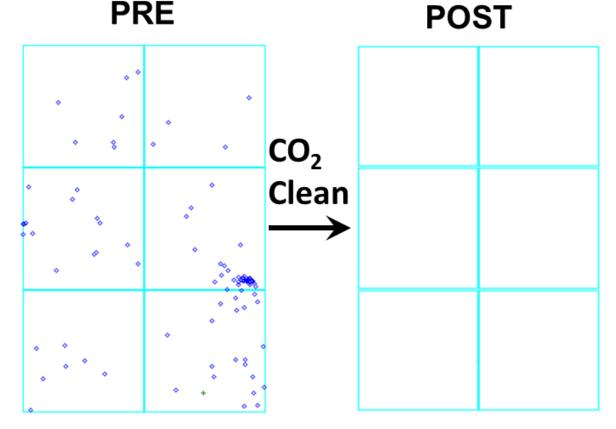

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Eco-Snow Confidential

A Division of RAVE N.P., Inc. | ECO-SNOW SYSTEMS

Final Clean Capability

(pre-pellicle for replacing wet)


100% removal of all 21 particles including 7 large (>1µm) defects. No pattern damage observed on optical mask.

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

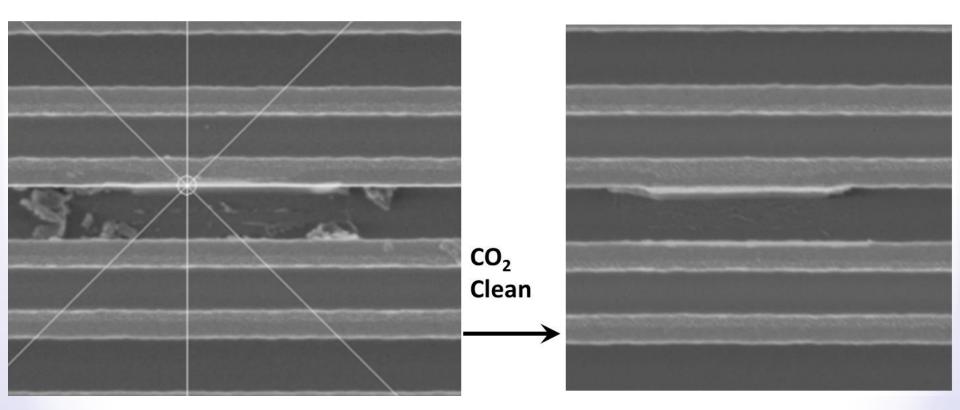
Eco-Snow Confidential

A Division of RAVE N.P., Inc. ECO-SNOW SYSTEMS

Cleaning Capability of Process Adders from Other Tools on Optical Masks

>50 nm printability spec

100% removal of all contamination including 40+ Large particles (>1μm). No pattern damage was observed.


2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

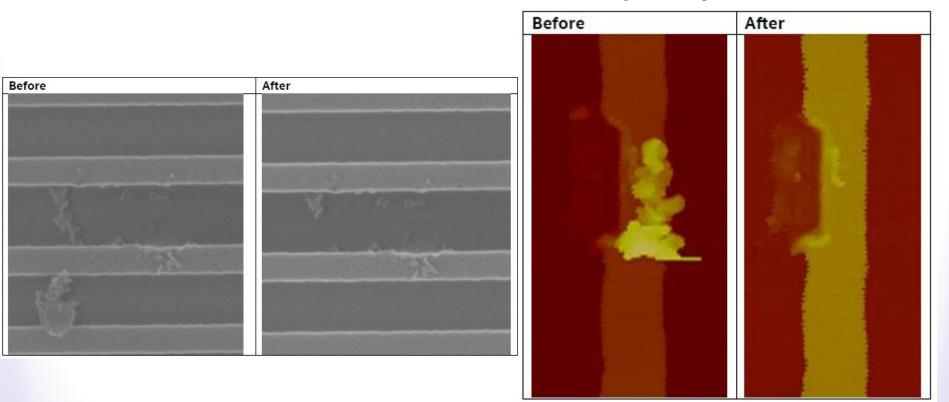
Eco-Snow Confidential

A Division of RAVE N.P., Inc. ECO-SNOW S

Post Repair debris Cleaning

Sub-30nm Defect Removal Capability

Post nanomachining repair debris (quartz, MoSi) on advanced node mask 100% Removal of all Printable Debris


A Division of RAVE N.P., Inc. | ECO-SNOW SYSTEMS

100% removal of all printable Post nanomachining repair debris.

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Post Repair debris Cleaning

Sub-30nm Defect Removal Capability

SEM Images Mask #1

AFM Images Mask #2

A Division of RAVE N.P., Inc. ECO-SNOW SYSTEMS

Satisfactory AIMS printability results on Pilot advanced masks Post CO₂ clean.

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

EL-C[™] EUV Mask Cleaning

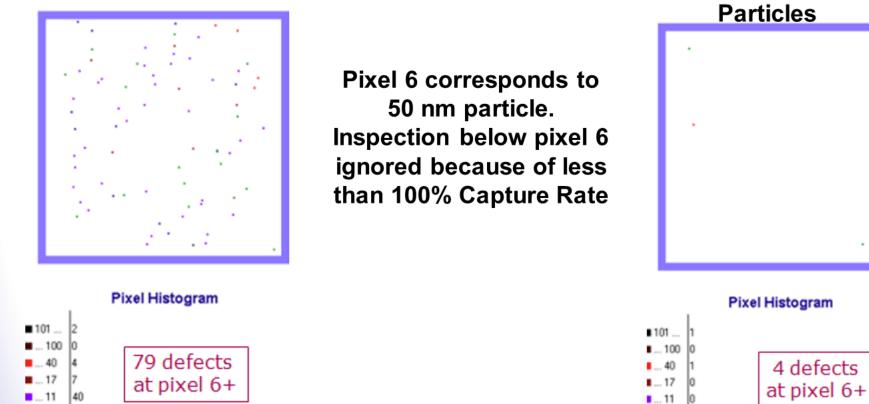
EUV Front Side Cleaning

- Native Particles
- Ru Film Damage-free Cleaning
- EUV Back Side Cleaning
 - Native Particles
 - E-chucked Defects

A Division of RAVE N.P., Inc. | ECO-SNOW SYSTEMS

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

EUV Front Side CO₂ Cleaning Capability


New and/or Re-deposited

...7

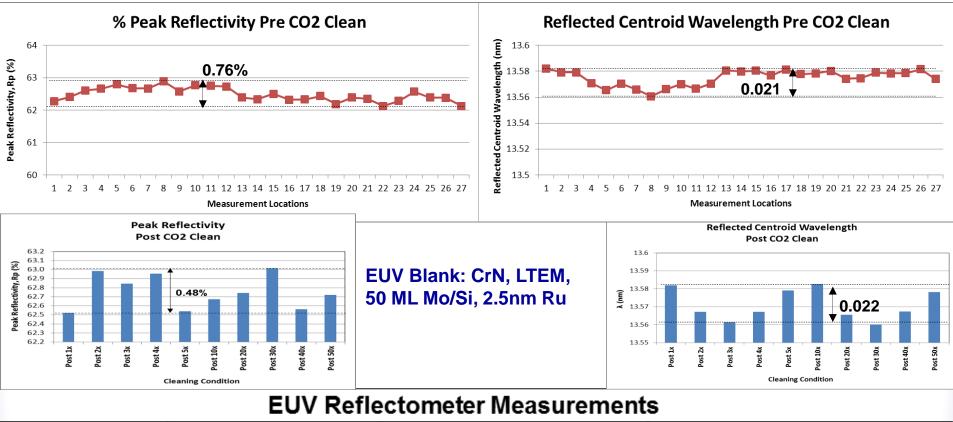
A Division of RAVE N.P., Inc. | ECO-SNOW SYSTEMS

I... 6

Removed Particles

CO₂ cleaning capable of removing 50nm inorganic particles on EUV mask blanks similar to optical masks.

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA


13

19

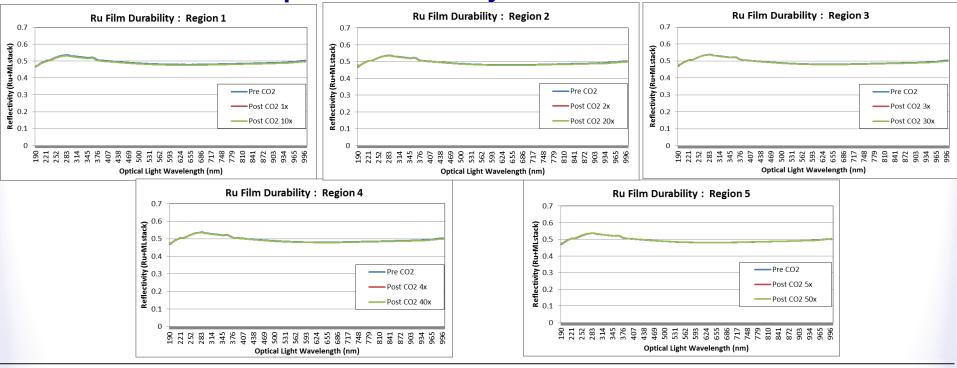
...6

EUV Front Side Cleaning (50x Cleans Ru)

EUV Reflectometer Measurements

Mask ELIV Reflectivity	Pre CO2 (27 F	oints)	Post CO2: 1x,2x,3x,4	x,5x (5 Points)	Post CO2: 10x,20x,30x,40x,50x (5 Points)		
Mask EUV Reflectivity (ML Stack+Ru)	Peak Reflectivity	Centroid	Peak Reflectivity	Centroid	Peak Reflectivity	Centroid	
	Rp (%)	λ (nm)	Rp (%)	<u>λ</u> (nm)	Rp (%)	λ (nm)	
Average	62.48	13.575	62.77	13.571	62.74	13.571	
Maximum - Minimum	0.76	0.021	0.46	0.022	0.45	0.022	

No degradation of the Ru film after 50x CO₂ Cleans. Post 1x to Post 50x clean no change in Reflectivity in EUV light.


ECO-SNOW S

A Division of RAVE N.P., Inc.

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

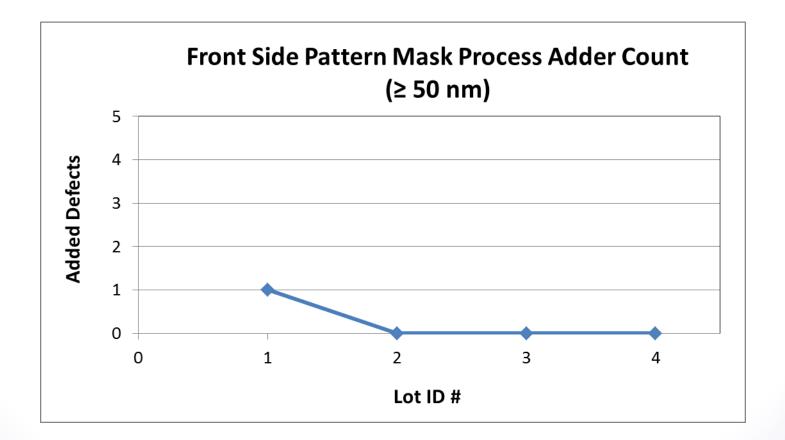
EUV Front Side Cleaning (50x Cleans Ru)

Optical Reflectivity Measurements

Optical Reflectivity Measurements

% Reflectivity		Region 1		-	Region 2		-	Region 3			Region 4			Region 5	
(ML+Ru)	Pre	1x	10x	Pre	2x	20x	Pre	3x	30x	Pre	4x	40x	Pre	5x	50x
@257 nm	52.55	52.23	52.23	52.62	52.56	52.56	52.63	52.61	52.61	52.62	52.56	52.56	52.53	52.76	52.76

Average	Pre	Post CO2	PostCO2		
Reflectivity	CO2	(1 - 5 x)	(10 - 50 x)		
(ML+Ru)@ 257 nm	52.59	52.54	52.54		

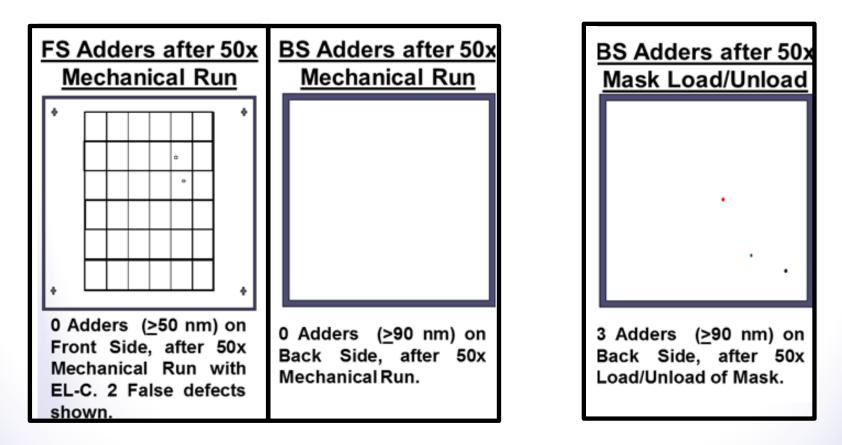

ECO-SNOW

A Division of RAVE N.P., Inc.

No degradation of the Ru film after 50x CO₂ Cleans. Post 1x to Post 50x clean no change in Reflectivity in Optical light.

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

EUV Front Side Process Cleanliness

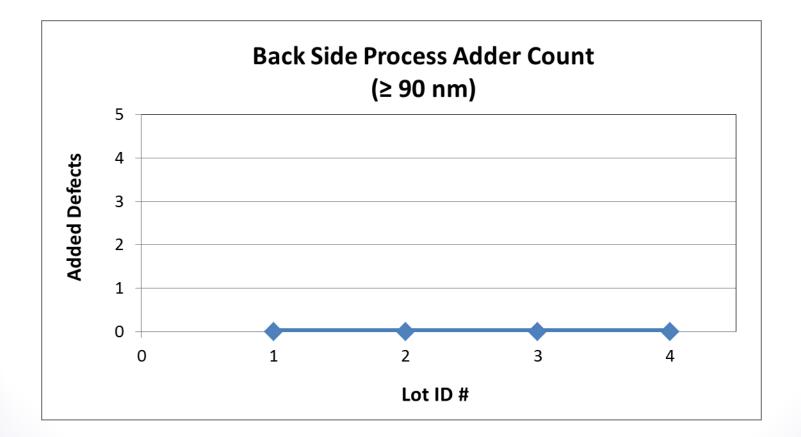

Demonstrated Zero Front Side Process Adders (≥ 50nm) on 3 back to back runs of CO₂ cleaning

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Eco-Snow Confidential

A Division of RAVE N.P., Inc. | ECO-SNOW SYSTE

EL-C System Environment and Handling Mechanisms Cleanliness

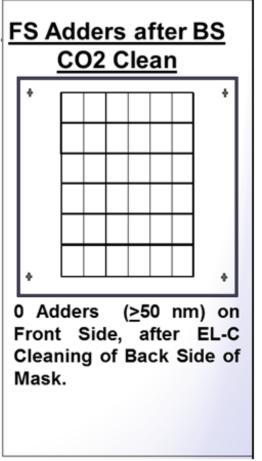

EL-C demonstrated Clean Handling Mechanisms and Environment (No CO₂)

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Eco-Snow Confidential

A Division of RAVE N.P., Inc. | ECO-SNOW SYSTEMS

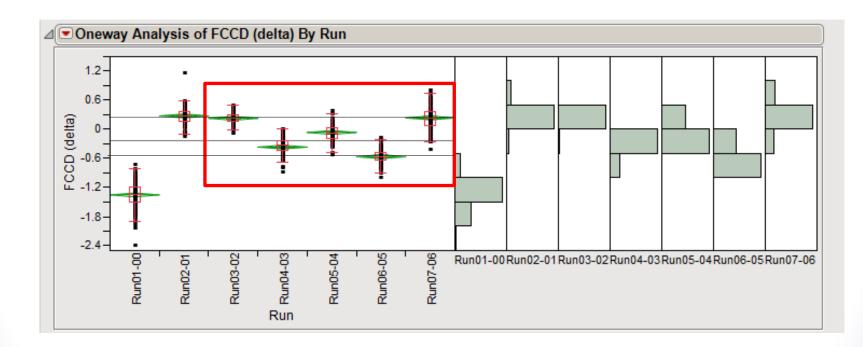
EUV Back Side Process Cleanliness


Demonstrated Zero Process Adders on 4 back to back CO₂ cleans

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Eco-Snow Confidential

A Division of RAVE N.P., Inc. | ECO-SNOW SYSTEMS

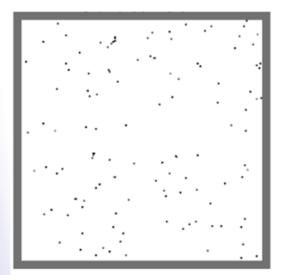

EUV Back Side Cleaning without Front Side Cross- Contamination

Demonstrated Zero Front Side Adders (≥ 50nm) after Backside CO₂ Cleaning

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA A Division of RAVE N.P., Inc. | ECO-SNOW SYSTEMS

EUV Pattern Mask FCCD (delta) uniformity analysis

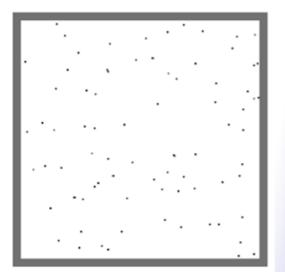
No visible CD [Final Check CD(delta)] changes (< 1 nm) on pattern mask after 5x Back side CO₂ cleans


2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Eco-Snow Confidential

A Division of RAVE N.P., Inc. ECO-SNOW SYSTEMS

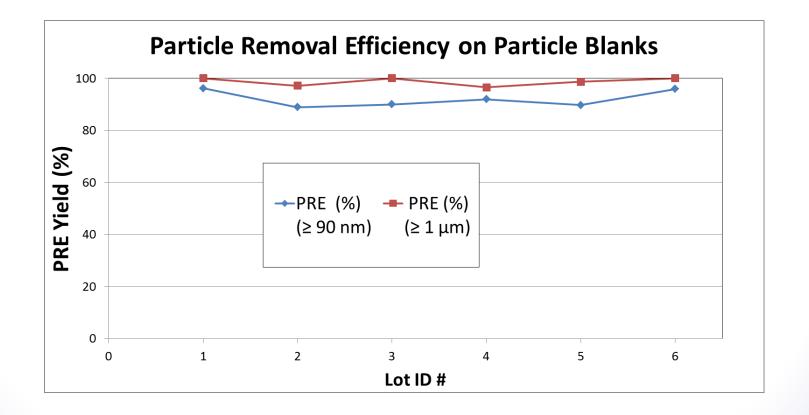
EUV Back Side Cleaning Capability (Native Particles ≥ 1µm)


Pre Clean

Post Clean

Particles Removed

Demonstrated 100% removal of native particles ($\geq 1\mu m$) on Back Side of EUV Mask Blank with CO₂ Cleaning


2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Eco-Snow Confidential

A Division of RAVE N.P., Inc. | ECO-SNOW SYSTEMS

EUV Back Side Cleaning Capability

Native Particles

Back Side CO₂ Cleaning PRE performance on native particles on EUV blank masks:


- PRE 90% @ ≥ 90 nm
- PRE 99% @ ≥ 1 µm

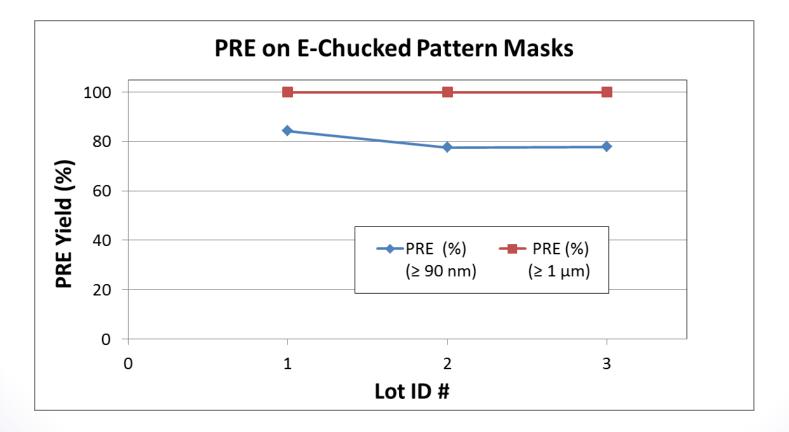
2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Eco-Snow Confidential

A Division of RAVE N.P., Inc. | ECO-SNOW SYSTE/

EUV Back Side Electrostatic-Chucked Defects Cleaning Capability

- Example of cleaning capability of Back Side E-chucked defects on EUV Masks
- Hard defects, pits or scratches, will not be cleaned by EL-C
- All removable defects larger than 1 micron were effectively removed by EL-C


2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Eco-Snow Confidential

A Division of RAVE N.P., Inc. ECO-SNOW SYSTEMS

EUV Back Side Cleaning Capability

E-Chucked Defects on Production EUV Pattern Masks

- Cleaning capability of Back Side E-chucked defects on Production EUV Masks
- Hard defects, pits or scratches, will not be cleaned by EL-C
- All removable defects larger than 1 micron were effectively removed by EL-C

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Eco-Snow Confidential

A Division of RAVE N.P., Inc. ECO-SNOW SYS

Remarks and Conclusions

- CO₂ Cleaning is in Production for Advanced Node Optical Masks at multiple customer sites
- CO₂ Cleaning is qualified on Production EUV pattern masks for backside E-chucked defects
- No mask degradation as a result of 50x CO₂ Cleaning
- Multiple cleaning applications have been identified and developed with CO₂ cleaning

CO₂ Cryogenic Aerosol Cleaning is production ready for EUV mask cleaning applications

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Eco-Snow Confidential

A Division of RAVE N.P. Inc. | ECO-SNOW SYSTEN

Acknowledgements

Charles W. Bowers and colleagues at Eco-Snow Systems

Captive Mask Shop Customers

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

Thank You

2016 EUV Lithography Workshop June 13-16, 2016, Berkeley, CA

