

Multilayer EUV optics with integrated IR suppression gratings

Torsten Feigl, Marco Perske, Hagen Pauer, Tobias Fiedler optiX fab GmbH

Uwe Zeitner, Robert Leitel, Hans-Christoph Eckstein, Philipp Schleicher, Sven Schröder, Marcus Trost, Stefan Risse, Ralf Steinkopf Fraunhofer IOF

Christian Laubis, Frank Scholze PTB Berlin

Berkeley, June 15, 2016

- Introduction
- EUV multilayer optics activities
- How to integrate IR suppression gratings into EUV multilayers
- Summary

Introduction

- EUV multilayer optics activities
- How to integrate IR suppression gratings into EUV multilayers
- Summary

History of optiX fab.

- **1997:** Start of EUV multilayer development @ Fraunhofer IOF
- **2000:** First paper at SPIE "Microlithography" on Mo/Si multilayer mirrors
- **2002:** Start of cooperation with semiconductor industry:

ASML, Cymer, Intel, Jenoptik, Schott Lithotec, Zeiss, etc.

- **2009:** Coating of first NXE:3100 collector mirror
- **2011:** Development of collector refurbishment technologies

- **1997:** Start of EUV multilayer development @ Fraunhofer IOF
- **2000:** First paper at SPIE "Microlithography" on Mo/Si multilayer mirrors
- **2002:** Start of cooperation with semiconductor industry:

ASML, Cymer, Intel, Jenoptik, Schott Lithotec, Zeiss, etc.

- **2009:** Coating of first NXE:3100 collector mirror
- **2011:** Development of collector refurbishment technologies

- **2012:** Foundation of Fraunhofer IOF spin-off company **optiX fab.**
- **2013:** August 1st: Operations start @ optiX fab.
- June 2016: Delivery of 4191 EUV and X-ray mirrors to customers

optiX fab. organization

Mission: Fabrication of customized EUV optics and optical components for EUV lithography @ 13.5 nm, for EUV, soft and hard X-ray applications, synchrotron and FEL beamlines, metrology, R&D, HHG sources, etc.

Address: optiX fab GmbH Hans-Knöll-Str. 6 D - 07745 Jena

URL: www.optixfab.com

Team:

Torsten Feigl

Marco Perske

Hagen Pauer

Tobias Fiedler

Introduction

- EUV multilayer optics activities
- How to integrate IR suppression gratings into EUV multilayers
- Summary

Multilayers for 13.5 nm

Measured @PTB Berlin

Broadband Multilayers for 12.5 ... 16.0 nm

Measured @PTB Berlin

Beamsplitters for 13.5 nm

Measured @PTB Berlin

optiX fab.

10 I 2016 EUVL Workshop, Berkeley, June 13-16, 2016

Multilayers for the water window

optiX fab.

Multilayers for 8 ... 12 nm

Narrowband Multilayers for 30 ... 38 nm

Gold coated synchrotron optics

EUV optics – made by optiX fab

- Introduction
- EUV multilayer optics activities
- How to integrate IR suppression gratings into EUV multilayers
- Summary

EUV lithography: Lithography gets extreme

[Nature Photonics 4, 24-26 (2010)]

Multilayer coated collector optics for LPP sources

EUV LPP collector with dual-wavelength spectral purity filter

EUV LPP collector with integrated spectral purity filter

with integrated binary phase grating

Principle of EUV multilayer with integrated phase grating

Requires a suitable process for the structuring of the multilayer stack without degrading the EUV-reflectivity

PROs	CONs
Established process for small-size and flat substrates	Scaling of technology to collector dimensions requires specialized etching vacuum system
	Technology requires N = 500 Mo/Si pairs (10 times more compared to normal collector coating)
	open multilayer structure

Requires a suitable process for the structuring of the substrate without increasing HSFR roughness

PROs	CONs
Number of Mo/Si pairs: N = 50	HSFR of grating bottom and top of
	s < 0.3 nm rms (main challenge)
No open multilayer structure	— - ·· · · · · ·
	Scaling of technology to collector dimensions requires specialized etching vacuum system

YAG laser grating:

Wavelength:	1064 nm
Grating period:	100 µm
Grating height:	275 nm

YAG laser grating:

Wavelength:	1064 nm
Grating period:	100 µm
Grating height:	275 nm

YAG laser grating:

Wavelength:	1064 nm
Grating period:	100 µm
Grating height:	275 nm

29 I 2016 EUVL Workshop, Berkeley, June 13-16, 2016

YAG laser grating:

Wavelength:	1064 nm
Grating period:	100 µm
Grating height:	275 nm

YAG laser grating:

Wavelength:	1064 nm
Grating period:	100 µm
Grating height:	275 nm

31 I 2016 EUVL Workshop, Berkeley, June 13-16, 2016

YAG laser grating:

Wavelength:	1064 nm
Grating period:	100 µm
Grating height:	275 nm

32 I 2016 EUVL Workshop, Berkeley, June 13-16, 2016

YAG laser grating:

Wavelength:	1064 nm
Grating period:	100 µm
Grating height:	275 nm

YAG laser grating:

Wavelength:	1064 nm
Grating period:	100 µm
Grating height:	275 nm

YAG laser grating:

Wavelength:	1064 nm
Grating period:	100 µm
Grating height:	275 nm

37 I 2016 EUVL Workshop, Berkeley, June 13-16, 2016

Theoretical reflectance of Mo/Si multilayer for normal incidence

EUV LPP collector with dual-wavelength spectral purity filter

Dual-wavelength Spectral Purity Filter

Sub-aperture EUV collector substrate fabrication

- Material: Aluminum-Silicon alloy, Ni plated
- Form: spherical, ROC = 300 mm, Ø 150 mm
- Technology: diamond turning + polishing

White light interferometry of grating structure

42 I 2016 EUVL Workshop, Berkeley, June 13-16, 2016

AFM surface roughness analysis of grating bar and groove

Coating of Mo/Si multilayers

Substrate size: up to Ø 700 mm

- six deposition targets
- deposition of graded multilayers on curved substrates
- Installation: 2009

EUV reflectance measurement @ PTB Berlin

Measurement of IR grating efficiency @ 10.6 μm and 1064 nm

Dual grating efficiency @ 10.6 μ m

Dual grating efficiency @ 1064 nm

48 1

Scanning Electron Microscopy of dual-wavelength SPF

Introduction

- EUV multilayer optics activities
- How to integrate IR suppression gratings into EUV multilayers

Summary

- Fabrication of customized EUV and VUV multilayer optics from 2 nm to 200 nm
- New reflectance level for EUV lithography optics: R = 70.12 % @ 13.50 nm
- Development of multilayer collector mirrors with integrated IR suppression
- Comparison of multilayer and substrate etching
- Strengths and weaknesses of both methods
- Greatest strength of substrate structuring: no open multilayer structure
- Outlook: Improving of substrate edge angle to optimize ML groth

EUV team @ Fraunhofer IOF:

Christoph Damm, Wilko Fuhlrott, Matthias Hauptvogel, Tobias Herffurth, Nils Heidler, Robert Jende, Jan Kinast, Sylke Kleinle, Sandra Müller, Thomas Müller, Michael Scheler, Mathias Rohde, Steffen Schulze, Ronald Schmidt, Uta Schmidt, Mark Schürmann, Sergiy Yulin

EUV reflectivity measurement team @ PTB Berlin

Christian Buchholz, Annett Barboutis, Andreas Fischer, Florian Knorr, Heiko Mentzel, Jana Puls, Anja Schönstedt, Michael Sintschuk, Christian Stadelhoff

Special Thanks

TEM team @ Nanolab Technologies:

Shaojie (Jeff) Wang, Charlene Sun, Peng Ziang, Xiuhong Han

Thank you.

optiX fab.

www.optixfab.com

Theoretical reflectance of Mo/Si multilayer for normal incidence

