

Molecular Resist Materials for Extreme Ultraviolet Lithography

<u>Hiroki Yamamoto¹, Hiroto Kudo², and Takahiro Kozawa¹,</u>

¹The Institute of Scientific and Industrial Research, Osaka University, **8–1** Mihogaoka, Ibaraki,Osaka **567–0047**, Japan ²Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, **3–3–35**, Yamate-cho, Suita-shi, Osaka **564–8680**, Japan

Main problem of EUV resist

Lithography roadmap							
Year of production	2015	2017	2019	2021	2019	2023	2028
DRAM 1/2 pitch	32 nm	25 nm	20 nm	18 nm	16 nm	13 nm	7 nm
Exposure source	ArF (193 nm)					EUV	

Advantage of Molecular resist

The origins of LER

- Molecular size
- Molecular dispersion

Advantage

•Very small molecular size High resolution

<u>Molecular resist</u>

- Small molecular size
- Uniform size
- Developable in TMAH
- Thermal stability
- Etching durability

The Objective of this work

We evaluated the lithographic performance of molecular resist materials based on cyclic oligomers using EUV and EB exposure system. Also, we examined the etch durability of synthesized molecular resist materials.

Molecular resist

Sample Name	Resist 1	Resist 2	Resist 3	Resist 4	
Core Structure	HO HO OH HO HO OH HO HO OH HO OH	HO OH HO OH HO OH OH HO OH HO OH HO OH	HO EtO HO EtO HO EtO HO HO EtO OH OEt OH OEt OH OEt OH OEt OH OEt OH OH OEt OH OH OH OH OH OH OH OH OH OH	HO MEO OH OME HO OH OME HO OH OME HO OH OME HO OH OME HO OH OME HO OH OME Noria-OME	
Protecting group		\int^{0}			
Protecting ratio (%)	40	23	49	44	
Casting Solvent	PGMEA	PGME	PGMEA	PGMEA	

Molecular resists

Samples

The weight ratio of the acid generator to molecular resists was 10 wt%.

Experimental procedure

Sensitivity curve of noria derivatives

Experimental procedure

Etching durability

Molecular resists

	Noria derivatives				
Resist materials		OR^1	OR ²		
Resist 1	Noria-AD ₂₇		ОН		
Resist 2	Noria-AD ₄₅	ОН	ОН		
Resist 3	Noria-OEt-AD ₁₃	or	OEt		
Resist 4	Noria-OMe-AD ₁₈		OMe		
Resist 5	Noria-OMe-AD ₄₅	0~0~	OMe		
Resist 6	Noria-OMe-AD ₅₅	ö	OMe		
Resist 7	Noria-OMe-AD ₇₅		OMe		

Conclusion

- We developed positive-tone chemically amplified molecular resist materilas based on cyclic oligomers such as noria, calixarene-dimer, cyclodextrin, and pillar[5]arene, and investigated their lithographic performances using EUV and EB.
- We make clear that a small change in modification of noria resists can cause a significant change of sensitivity. Especially, it is useful for the improvement of resist sensitivities to use protecting groups such as 2-acetyloxy-2-methyladamantyl ester (AD) groups and ethoxy groups.
- The hole size of molecular structure is more important factor for sensitivity in EUV and EB resists.
 - The etching rate of noria derivatives is similar to that of conventional resist materials such as PHS, ZEP520A and UVIII.
- The cyclic oligomers have the potential to offer exceptional resolution as future positive tone EUV and EB resist materials.