Mechanisms of EUV Exposure: Internal Excitation and Electron Blur EUV Symposium – June 16, 2016

Amrit Narasimhan,^a Steven Grzeskowiak,^a Liam Wisehart,^a Mark Neisser,^b Leonidas E. Ocola,^c Greg Denbeaux^a and Robert L. Brainard^a

(a) SUNY Polytechnic (b) SUNY Poly SEMATECH, (c) Argonne National Laboratories

- I. Introduction
- **II.** Internal Excitation
- **III. Experiment/Modelling of Electron Blur**

Goals and Motivation

hν

EUV Photons:

- Create Electrons → Can Cause Reactions
- Create Holes → Can Cause Reactions
- Deposit Energy \rightarrow Can Cause Reactions

What are the Mechanisms of These Reactions?

- For PAGs?
- For Metal-Containing Resists?

Understanding Should lead to Better Resists

Fundamental Reactions between e-, hv and Matter:

II. Internal Excitation

Internal Excitation of PAG by Passing Electron:

An electron could interact with a molecule to induce a HOMO/LUMO transition: analogous to photoexcitation.

One electron could "photolyze" several PAGs without being consumed.

These energy loss mechanisms are known in the EELS Literature for simple structures.*

*Ritsko et al. JCP 1978; JCP 1979; Vilar et al. JESRP 2009; Vilar et al. *Langmuir* 2003, Liehr Phys Rev B 1986.

Internal Excitation via Electron-Induced Fluorescence

Can we demonstrate this mechanism using fluorescent dyes?

Coumarin 6 Fluorescent Dye 5 SUNY POLYTECHNIC INSTITUTE

Experimental Schematic

EUV Symposium 6/16/16

6 **SUNY** POLYTECHNIC INSTITUTE

Fluorophores Studied

Best Performing Fluorophores

5000 eV E-Beam Fluorescence Maxima vs. Optical Fluorescence

III. Experiment/Modelling of Electron Blur

Thickness Loss was measured as a function of e- energy and dose.

10

INIC

Thickness Loss of Open-Source Resist (OS2)

Comparison of Experiment with Monte Carlo Simulation using LESiS (Low-energy Electron Scattering in Solids)

LESiS is a fully stochastic simulation program designed originally by Leo Ocola.

- Cross-sections are calculated in real time.
- Monte Carlo is implemented in real time.

LESiS can simulate exposures by electrons or photons.

LESiS outputs data for each scattering event

- Energy
- Trajectory
- Identity, location, and orbital of the involved atom

LESiS Model Follows these Events:

= Core Electrons = Valence Electrons

JY POLYTECH

13

ECHNIC

Energy Loss Events per e⁻ vs. Resist (OS2) Depth

SUNY POLYTECHNIC INSTITUTE

15

Thickness Loss Simulation (OS2, 700 eV)

Thickness Loss Simulation Results (OS2)

Thickness Loss Simulation Results (OS2)

Currently, LESiS does not adequately model Very Low-Energy Electrons.

18

HNIC

Threshold set to match 700 eV simulation and experimental data

Maybe these Energy Loss Events Don't Properly Model Chemical Reactions

Energy Loss Events per evs. Resist (OS2) Depth

Energy Loss Events per evs. Resist (OS2) Depth

Thickness Loss Simulation Results (OS2)

Thickness Loss Simulation Results (OS2)

A better model when 3 or 5 eV transitions are included.

23

Threshold set to match 700 eV simulation and experimental data

Conclusions

Internal Excitation

- Demonstrated that secondary electrons can create excited states through internal excitation.
- Two dyes have significantly greater internal excitation quantum yields and very similar optical absorption maxima (450 nm/2.8 eV).
- However, the electron cross-sections for internal excitation by 80 eV electrons is low (~1%) for the best dyes. Key discoveries are required before this mechanism can be useful.

Thickness Loss/Electron Blur

- The best agreement between model and experiment is achieved when the reactivity of very low energy electrons (~3 eV) are included.
- This mechanism could improve sensitivity as a trade-off to electron blur.

24 **SUNY** POLYTECHNIC INSTITUTE

Acknowledgements

Funding Provided By:

SUNY Polytechnic Institute (CNSE)

Tanzid Sultan Sean Wang Alex Comerford Bill Earley Lukas Katko

Argonne National Laboratories

This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility under Contract No. DE-AC02-06CH11357.

EUV Symposium 6/16/16

25 **SUNY** POLYTECHNIC INSTITUTE

Appendix

26 **SUNY** POLYTECHNIC INSTITUTE

Open-Source Photoresist: OS2

For most of our work, we use an Open Source Chemically Amplified Resist, Called OS2.*

In some cases, we replace the PAG with equal weight (15 wt%) of these Photoacid Generators (PAGs):

© −S−C4F9

*Higgins, Brainard et al. JJAP *50*, 036504, **2011**

27 **SUNY** POLYTECHNIC INSTITUTE