

Inspection Efficiency Comparison between Phase Contrast & Dark Field Microscopy for EUV Actinic Blank Inspection Yow-Gwo Wang^{1,2}, Andy Neureuther^{1,2}, Patrick Naulleau^{2.}

1. University of California, Berkeley. 2. Lawrence Berkeley National Laboratory

Motivation

- Compare the inspection efficiency (defect SNR) between Phase contrast (AZPC) and Dark filed (DF) techniques for EUV actinic blank inspection.
- Signal-to-Noise ratio (SNR) = lacksquare

Defect Signal Speckle Noise + System Noise Photon Shot Noise Camera Noise From Background From Signal

Defect			
Туре	Height/Depth	FWHM	
Bump/Pit	1 nm	60 nm	
Low-Aspect Ratio (LAR) Bump/Pit	1 nm	1000 nm	
Carbo Absorber (K = 6.868*10 ⁻³ at 92 eV)	50 nm	76 nm	
Mask Roughness			
RMS	Correlation Length		
60 pm	100 nm		

Parameter & Settings - Defects

Parameter & Settings - Optics

Illumination			
NA		0.2	
Sigma		0.5	
Bright Field Level Photon Dens	d sity (250,000	1 photon/nm ² photons in 500 x 500 nm ²)	
Pupil			
Туре	Phase Shift	Apodization (Background Transmission)	
AZPC	0~180°	100% ~ 10%	
DF	0	0%	

• Even though apodization can suppress the background and speckle noise, pit defects which utilize destructive interference will suffer reduced signal.

- For AZPC, the modulation of signal side lobe can impact the defect signal due to the pixel size (resolution).
- Larger pixel average out the signal enhancement due to the side lobe.

• AZPC shows better performance over DF when it is less than 2 photon per nm².

Phase Bump, Pixel Size: 25 x 25 nm², Phase Shift: 90°, Apodization: 100%.

Defect SNR Comparison for Various Defects under Different Inspection Conditions

Carbon Absorber Different Pixel Sizes

LAR Phase Bump Different Pixel Sizes

Color Bar Represents the Ratio of Defect SNR from AZPC and DF. (Ex. Ratio > 1 means AZPC is better)

- X-axis: Phase Shift Degree. Y-axis: Apodization (Background Transmission).
- Values in each figure represents pixel size in mask scale.

LAR Phase Pit Different Pixel Sizes

Conclusion

- AZPC shows better performance over DF when pixel size is less than 25 x 25 nm^2 in mask scale.
- AZPC shows better performance under photonlimited situation (< 2 photons / nm²).
- Optimum setting should try to maximize the defect signal by phase shifts. Impact of apodization is compensated by the consideration of pit defect and pixel size.

Acknowledgement:

Sponsored by ARM, ASML, Global Foundries, IBM, Intel, KLA-Tencor, Marvell Technology, Mentor Graphics, Panoramic Tech, Photronics, Qualcomm, SanDisk and Tokyo Electron.