Simulating EUV Production - an Overview of the Underpinnings

2017 International Workshop on EUV Lithography

Howard Scott and Steve Langer Lawrence Livermore National Laboratory

June 12-15, 2017 Berkeley, CA

LLNL-PRES-733031

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Outline

- Introduction what can we expect to get from simulations?
- Physical processes important for EUV generation
- Microphysics simulations
- Macrophysics simulations
- Current EUV simulation efforts
- Summary where do we go from here?

The goal is to gain an appreciation of what simulations can offer to the EUVL community

What should we simulate (and why)?

*for EUV production

- Explaining the basic behavior of the EUV-producing system requires
 - Identifying the underlying microphysical processes
 - Evaluating each process (and their interactions) under representative conditions
- A basic understanding is sufficient for:
 - Estimating conversion efficiency (CE) vs. density / temperature / timescale
 - Providing guidance towards optimum conditions
- More details, i.e. simulations, are necessary for:
 - Tracking time evolution of conditions and outputs
- High-quality simulations are required for:
 - Optimizing laser pulse shape
 - Minimizing (initial) target mass
 - Evaluating effects from asymmetries and shot-to-shot variations

"The purpose of simulation is insight, not numbers" - R.W. Hamming

How reliable are the results?

- Optimizing a system requires predicting the behavior of the system as it evolves through a range of conditions
- Confidence in predictions will be high when
 - Verified by experiment under full range of conditions

– or –

- Simulations of microphysical processes and their interactions have been verified
- Assumptions / approximations remain valid
- Getting all the details right is very difficult, but rarely necessary
- Getting the basic descriptions and interactions of the microphysical processes right is critical

Predicting trends does not depend on details, but does depend on valid assumptions and approximations

Very basic "simulations" have provided extremely valuable guidance

- Steady-state power balance → conversion efficiency (CE) laser absorption / atomic kinetics / hydrodynamics / radiative emission
- Low densities \rightarrow prepulse + longer wavelength laser (CO₂ , λ = 10.6 μ m)

Optimum CE, absorbed laser power ($\lambda = 1.06 \ \mu m$)

Optimum pulse duration (in ns)

Nishihara, et al, Physics of Plasmas 15, 056708 (2008)

Physical processes important for EUV generation

- Laser absorption
 - 1 μm (Nd:YAG) or 10 μm (CO_2)
- Mass transport
 - particles or hydrodynamics
- Energy transport via radiation, conduction, advection
- Non-LTE atomic kinetics
- EUV (+ other) radiation production
- Radiation transport

These processes are all interdependent

Basic description at the microphysical scale - "first principles"

- Laser absorption / radiation transport
 - Maxwell's equations + plasma physics
- Transport of particles and energy
 - Kinetic equations \rightarrow Boltzmann / Vlasov equations + moments
 - + transport coefficients

- Atomic physics
 - Schroedinger / Dirac equation for multi-electron atoms

Simulation at this level is difficult and time-consuming

Simulation at a macroscopic level requires numerous approximations and compromises

- Basic descriptions are replaced by derived models
 - Analytical models, tabulated data, "averaged" equations
 - e.g. Laser absorption modeled with ray tracing + inverse bremsstrahlung
 - e.g. High collisionality limit \rightarrow Hydrodynamics for mass transport
- Operator splitting
 - Each physical process is calculated separately
 - Splitting methods must respect the physical coupling between processes and obey relevant conservation laws
- Discretization methods with finite resolution
 - Discretized solutions should converge to the continuous solution at high resolution
 - Implicit time discretizations avoid resolving very small timescales

How do these approximations affect our interpretations of (and insights from) the simulation results?

Laser absorption (macroscopic)

- Absorption of low intensity laser light in a low density ideal plasma is well-described by
 - Geometrical optics ray tracing in a refractive medium
 - Inverse bremsstrahlung absorption (including refractive effects)
- Low level of non-linearities, plasma instabilities, scattering
- Non-ideal plasma effects on absorption / refraction are usually small for long wavelengths
- Main challenges are
 - Absorption in solid / liquid tin wave characteristics, small spatial scales production of energetic particles
 - refractive raytracing in 2D / 3D expanding geometries

Low intensity: I λ_{μ}^2 < 10¹⁵ W cm⁻²

This approach has been verified with (ideal) microscopic simulations and is in widespread use

Atomic physics of EUV-producing Sn

- Transitions producing 13.5 nm radiation: 4f-4d, 4d-4p, 5d-4p in Sn⁺⁸⁻¹³
- Data must cover <u>all</u> charge states up to > +28
- Atomic levels sufficient to converge populations

 → very large # of levels (>10³ per charge state)
 → very high resolution needed for spectrum

Possible approximations:

- Limited accuracy QM calculations
- Omit / average levels and transitions
- Less resolution inspectrum

Koshelev, et al, 2006 Source Workshop

Atomic physics + NLTE kinetics

- NLTE: Non-Local Thermodynamic Equilibrium
 - ightarrow excited state populations not in Saha-Boltzmann distribution
- Evaluation of populations: Atomic data (energy levels, transition cross-sections)
 + Electron and photon distributions

 → atomic populations (time evolution)
 + radiative cross-sections
 → radiative emission / absorption
 + radiation transport
 → T_e + T_i + photon distribution

iterative procedure

Populations and radiation are tightly coupled

Atomic physics provides the EUV-producing transitions NLTE kinetics drives the radiative emission

NLTE kinetics of EUV production

- Spectral efficiency: fractional emission in bandpass
- Bandpass emission comes from material with n_e ~ 0.1 n_{crit}
- Calculated with highly-averaged atomic data
- Assumes steady-state, no radiation field
- Timescales for low n_e, high T_e exceed laser pulse timescale

→ Minimal benefit to pursuing lower densities

Incorporating NLTE atomic kinetics into rad-hydro

- Tabulated methods allow inexpensive use of complete atomic data
 - Assumptions / approximations are built into the table
 - NLTE equations solved in steady-state
 - Radiation field specified by assumed conditions
 - Coupling to other physics is severely limited
- Inline methods allow full coupling
 - Complete atomic data is prohibitive in CPU time and memory usage
 - Use averaged atomic data
 - Frequency resolution sufficient for energy balance
 - Higher frequency resolution can be restored by postprocessing
 - Approximations can be relaxed by using less averaging

Time-dependent or steady-state kinetics?

- Inline kinetics are run in a time-dependent mode
- Postprocessing can use either time-dependent or steady-state mode
- Validity of steady-state kinetics is necessary for a tabular approach

A fast-rising pulse requires a time-dependent treatment

Insights from a pre-pulse simulation

- Pre-pulse turns spherical droplet into a thin strand surrounded by a low-density plasma
- Main pulse is absorbed up to critical surface, well away from the high-density material

Behavior is much like a "mist" target

EUV simulation efforts

- LLNL / UC Berkeley (HYDRA, CRETIN, ALE/AMR, LSP)
 - Fully integrated physics in 3D (massively parallel) + postprocessing
 - Attempts to minimize uncontrolled approximations
 - Aimed at a predictive capability (single shots w/ prepulse)
- ISAN / EPRA / KIAM / Institute of Spectroscopy (Z*, RZLINE, RALEF + OpenFOAM)
 - Partially integrated full physics in 2D + postprocessing, 3D hydrodynamics
 - Models tailored for good results under reasonable conditions
 - Aimed at fast turnaround (but more detailed simulations are available)
 - Now doing system level simulations with multiple laser shots
- JAEA (STAR, ...)
 - Integrated plasma hydrodynamics in 2D
 - Developing an integrated capability
- Purdue / ANL (HEIGHTS)
 - Integrated physics in 3D + Monte Carlo ion production

A useful simulation program should operate at all levels

Summary – what is next for EUV simulations?

- Simulation capabilities are improving
 - Macroscopic models based on higher fidelity microscopic models
 - Multiple physical processes with better coupling algorithms
 - Capability to test approximations with more fundamental methods
 - Larger, faster computers allow better models and/or higher resolution
- Confidence requires comparisons to multiple experiments
- Producing a predictive capability will take a dedicated effort

Simulations can provide important guidance for EUV production, but only if the industry is prepared to understand the results

