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Introduction — what can we expect to get from simulations?

Physical processes important for EUV generation

Microphysics simulations

Macrophysics simulations

Current EUV simulation efforts

Summary — where do we go from here?

The goal is to gain an appreciation of what simulations can

offer to the EUVL community
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What should we simulate (and why)?
*for EUV production

Explaining the basic behavior of the EUV-producing system requires
— Identifying the underlying microphysical processes

— Evaluating each process (and their interactions) under representative conditions

A basic understanding is sufficient for:
— Estimating conversion efficiency (CE) vs. density / temperature / timescale
— Providing guidance towards optimum conditions

More details, i.e. simulations, are necessary for:
— Tracking time evolution of conditions and outputs

High-quality simulations are required for:

— Optimizing laser pulse shape

— Minimizing (initial) target mass

— Evaluating effects from asymmetries and shot-to-shot variations

“The purpose of simulation is insight, not numbers”- RW. Hamming

. - ( "‘l
Lawrence Livermore National Laboratory N I af_% 3
LLNL-PRES-733031 National Nuclear Security Administration




How reliable are the results?

= Optimizing a system requires predicting the behavior of the system as it
evolves through a range of conditions

= Confidence in predictions will be high when
— Verified by experiment under full range of conditions
—or-
— Simulations of microphysical processes and their interactions have been verified
— Assumptions / approximations remain valid

= Getting all the details right is very difficult, but rarely necessary

= Getting the basic descriptions and interactions of the microphysical
processes right is critical

Predicting trends does not depend on details, but does

depend on valid assumptions and approximations
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Very basic “simulations” have provided
extremely valuable guidance

= Steady-state power balance = conversion efficiency (CE)
laser absorption / atomic kinetics / hydrodynamics / radiative emission

= Low densities = prepulse + longer wavelength laser (CO, , A = 10.6 um)
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Physical processes important for EUV generation

Laser absorption

— 1 um (Nd:YAG) or 10 pum (CO,) Prepulse laser

Sn droplet

= Mass transport \

— particles or hydrodynamics ablaion

translation ‘\
. . . ) \
u Energy transport Vvia radlatlon, expansion \

conduction, advection \
= Non-LTE atomic kinetics

= EUV (+ other) radiation production
( ) P I—)

= Radiation transport

Main pulse laser

These processes are all interdependent
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Basic description at the microphysical scale
- “first principles”

= Laser absorption / radiation transport

— Maxwell’s equations + plasma physics

= Transport of particles and energy

— Kinetic equations = Boltzmann / Vlasov equations + moments
+ transport coefficients

= Atomic physics

— Schroedinger / Dirac equation for multi-electron atoms

Simulation at this level is difficult and time-consuming
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Simulation at a macroscopic level requires
humerous approximations and compromises

= Basic descriptions are replaced by derived models
— Analytical models, tabulated data, “averaged” equations
— e.g. Laser absorption modeled with ray tracing + inverse bremsstrahlung
— e.g. High collisionality limit = Hydrodynamics for mass transport
= Qperator splitting
— Each physical process is calculated separately

— Splitting methods must respect the physical coupling between processes and obey
relevant conservation laws

= Discretization methods with finite resolution
— Discretized solutions should converge to the continuous solution at high resolution

— Implicit time discretizations avoid resolving very small timescales

How do these approximations affect our interpretations of

(and insights from) the simulation results?
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Laser absorption (macroscopic)

Absorption of low intensity laser light in a low density ideal
plasma is well-described by

— Geometrical optics ray tracing in a refractive medium
— Inverse bremsstrahlung absorption (including refractive effects)
Low level of non-linearities, plasma instabilities, scattering

Non-ideal plasma effects on absorption / refraction are usually small
for long wavelengths

Main challenges are

Low intensity: I A,* < 105 W cm-2

— Absorption in solid / liquid tin
wave characteristics, small spatial scales
production of energetic particles

— refractive raytracing in 2D / 3D expanding geometries

This approach has been verified with (ideal) microscopic simulations

and is in widespread use
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Atomic physics of EUV-producing Sn

= Transitions producing 13.5 nm radiation: . e B
4f-4d, 4d-4p, 5d-4p in Sn*&13 R W 1
= Data must cover all charge states up to > +28 E - =
= Atomic levels sufficient to converge populations L -
- very large # of levels (>103 per charge state) e

- very high resolution needed for spectrum Koshelev, et af, 2006 Source Workshop
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Atomic physics + NLTE kinetics

= NLTE: Non-Local Thermodynamic Equilibrium
— excited state populations not in Saha-Boltzmann distribution

= Evaluation of populations:
Atomic data (energy levels, transition cross-sections)
+ Electron and photon distributions <
— atomic populations (time evolution)
+ radiative cross-sections
—> radiative emission / absorption
+ radiation transport
- T, + T, + photon distribution

iterative
procedure

= Populations and radiation are tightly coupled

Atomic physics provides the EUV-producing transitions

NLTE kinetics drives the radiative emission
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NLTE kinetics of EUV production

= Spectral efficiency:
fractional emission in bandpass PeCtral Efficiency
1 | para el
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| Accessible with
10.6um laser

= Bandpass emission comes from
material withn,~ 0.1 n
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= Calculated with highly-averaged
atomic data
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= Assumes steady-state, no radiation
field

H
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= Timescales for low n_, high T,
exceed laser pulse timescale

Electron Temperature (eV)

n
o

- Minimal benefit to pursuing

lower densities 10/ 107 108 10'°

lon Density (#/cm?)
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Incorporating NLTE atomic kinetics into rad-hydro

= Tabulated methods allow inexpensive use of complete atomic data
— Assumptions / approximations are built into the table

* NLTE equations solved in steady-state
« Radiation field specified by assumed conditions

— Coupling to other physics is severely limited

= |nline methods allow full coupling

— Complete atomic data is prohibitive
in CPU time and memory usage

— Use averaged atomic data

— Frequency resolution sufficient for
energy balance

— Higher frequency resolution can be
restored by postprocessing

— Approximations can be relaxed by
using less averaging

fluence (erg/cmz/eV)

1D rad-hydro + postprocessing
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Time-dependent or steady-state kinetics?

= Inline kinetics are run in a time-dependent mode
= Postprocessing can use either time-dependent or steady-state mode
= Validity of steady-state kinetics is necessary for a tabular approach
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A fast-rising pulse requires a time-dependent treatment
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Insights from a pre-pulse simulation

t=35ns
= Pre-pulse turns spherical droplet 3 ,, f t =300 ns
into a thin strand surrounded by a  § » -
low-density plasma £
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= Main pulse is absorbed up to
critical surface, well away from
the high-density material
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Behavior is much like a “mist” target
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EUV simulation efforts

LLNL / UC Berkeley (HYDRA, CRETIN, ALE/AMR, LSP)

— Fully integrated physics in 3D (massively parallel) + postprocessing

— Attempts to minimize uncontrolled approximations

— Aimed at a predictive capability (single shots w/ prepulse)

ISAN / EPRA / KIAM / Institute of Spectroscopy (Z*, RZLINE, RALEF + OpenFOAM)
— Partially integrated full physics in 2D + postprocessing, 3D hydrodynamics

— Models tailored for good results under reasonable conditions
— Aimed at fast turnaround (but more detailed simulations are available)
— Now doing system level simulations with multiple laser shots

JAEA (STAR, ...)

— Integrated plasma hydrodynamics in 2D

— Developing an integrated capability
Purdue / ANL (HEIGHTS)

— Integrated physics in 3D + Monte Carlo ion production

A useful simulation program should operate at all levels
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Summary — what is next for EUV simulations?

= Simulation capabilities are improving
— Macroscopic models based on higher fidelity microscopic models
— Multiple physical processes with better coupling algorithms
— Capability to test approximations with more fundamental methods
— Larger, faster computers allow better models and/or higher resolution

= Confidence requires comparisons to multiple experiments

= Producing a predictive capability will take a dedicated effort

Simulations can provide important guidance for EUV production,

but only if the industry is prepared to understand the results
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