### A Compact Linac-Driven EUV Light Source utilizing a Short-Period Microwave-Driven Undulator

Filippos Toufexis\* - ftouf@stanford.edu,
C. Limborg-Deprey, V.A. Dolgashev, S.G. Tantawi
SLAC National Accelerator Laboratory
\*Also at Electrical Engineering, Stanford University

2017 International Workshop on EUV Lithography June 14, 2017



## Synchrotron Radiation

#### **Emission of Radiation from Accelerated Relativistic Charged Particles**



# Properties of Synchrotron Radiation



## Increasing the Flux & Narrowing the Spectrum



### Undulator Radiation is Quasi-Monochromatic



#### Static Field Undulator Period Limited by Small Apertures

### In-Vacuum & Superconducting $\lambda_u = 1.8 \text{ cm} / \text{K} = 2.1 / \text{Gap} = 3.7 \text{mm}$



Source: T. Tanaka *et al*, "In-Vacuum Undulators," In: Proceedings of the 27th International Free Electron Laser Conference, 21-26 August 2005, Stanford, California, USA.

Microfabricated Electromagnet  $\lambda_u$  = 400  $\mu m$  / K = 0.026 / Gap = 100  $\mu m$ 



Source: J. Harrison *et al*, "Surfacemicromachined magnetic undulator with period length between 10 µm and 1 mm for advanced light sources," Phys. Rev. ST Accel. Beams, vol. 15, no. 7, p. 070703, Jul. 2012, DOI: 10.1103/PhysRevSTAB.15.070703.

 $K = 0.934B_0(T)\lambda_u(cm)$ 



Source: M. Shumail Thesis, Stanford, 2014

#### Electromagnetic Undulators: Beam Wiggled by both E & B



#### Electromagnetic Undulators: Beam Wiggled by both E & B

Inverse Compton Scattering Sources  $\lambda_{\mu} = ~0.5 \ \mu m \ / \ K = ~10^{-3}$ 



Source: W. S. Graves *et al*, "Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz," Phys. Rev. ST Accel. Beams, vol. 17, no. 12, p. 120701, Dec. 2014. DOI: 10.1103/PhysRevSTAB.17.120701.

#### Not practical for EUV/Soft X-Ray Low & Non-uniform K

Microwave Undulators f = 11.424 GHz /  $\lambda_u$  = 1.39 cm K = 0.7 / Gap = 3.9 cm



Source: S.G. Tantawi 2014





### **10x Smaller Period than SACLA FEL Undulator**

# Challenges with Scaling to Higher Frequencies

Mitigate Wakefields Avoid RF Losses

& High Fields

Produce MWs of RF Power Beams Induce Wakefields in Pipes

Spoil Emittance, Instabilities, Beam Breakup



Longitudinal Wakefields  $\propto a^{-2}$ 

Transverse Wakefields  $\propto a^{-3}$ 

Need Millimeter-Scale Beam Apertures  $\sim \lambda$ 

10

# Challenges with Scaling to Higher Frequencies



# Challenges with Scaling to Higher Frequencies



Avoid RF Losses & High Fields

Produce MWs of RF Power Only Gyrotrons produce 1 MW They are Massive



~ 16cm @ 91.392 GHz

Source: S.G. Tantawi 2014



Source: Flickr/juliaL49

**Need Compact RF Source** 



# Undulator Cavity Overview





# **On-Axis Fields & Power Requirements**



z (cm)

16

# So how do we power it?





discuss in this talk.

#### Leverage existing SLAC Infrastructure worth several \$M





### Thermionic RF Injector generates Electron Bunches



## Electron Bunches accelerated to 129MeV

**Travelling Wave Linac** 









## Electrons Wiggled producing 13.5nm Radiation



### Spent Electron Beam Generates 91.392 GHz Power





#### **Beam Dynamics Simulation**



~6 m

### Potential for >100 W/mm<sup>2</sup>/sr/0.1%BW



SPECTRA Simulations: http://radiant.harima.riken.go.jp/spectra/

# Summary

- Short Period RF-Driven Undulator
  - 1.75 mm Period
  - 4.9 mm / 2.4 mm In/Out Apertures
  - Fed through the beam pipe
  - 1.4 MW for K = 0.1
- Presented Technology Demo EUV Source Design
  - Thermionic RF Injector with RF Bunch Compression
  - Energy Recovery Structure feeds the Microwave-Driven Undulator

#### Potential for >100 W/mm<sup>2</sup>/sr/0.1%BW

• Further R&D Required



#### **11.424 GHz Thermionic RF Injector**

~6 m

# Backup Slides

# TE<sub>11</sub> to Gaussian Mode Converter









#### Single Electron Beam Dynamics inside the Undulator



#### Train of Bunches needed to power the RF Undulator

#### 91.392GHz Accelerator Structure Driven by Single Bunch





34

# **RF** Injector Design





# Quadrupole-Free Mode Launcher



## Bunch Properties at the Peak Bunching Point

| Bunch Part:           | 80 %        |
|-----------------------|-------------|
| Energy:               | 4.6 MeV     |
| Bunch Charge:         | 25.7 pC     |
| Transverse RMS Size:  | 561 µm      |
| Bunch length:         | 338 fsec    |
| Transverse Emittance: | 6.2 mm mrad |
| Energy Spread:        | 3.5 %       |

Assuming 40 A/cm<sup>2</sup> cathode current density

### **Injector Beam Dynamics**



# Phase Space @ Max Compression



40

## Phase Space @ Undulator



41

### Energy Recovery

Beam Current:  $I_b = qf_b$ 





Pout

# Energy Recovery – Single Cavity

| Shunt Impedance | 444 MΩ/m or 0.73 MΩ/cell |
|-----------------|--------------------------|
| Temp Rise       | 49°C / 10 kW / 250 nsec  |



43

# Power Combining Manifolds



