

HIGH POWER HVM LPP-EUV SOURCE WITH LONG COLLECTOR MIRROR LIFETIME

Dr. Hakaru Mizoguchi

Vice President, CTO, Gigaphoton Inc.

Co-Author: Taku Yamazaki , Takashi Saitou

Co-Worker: Hiroaki Nakarai, Tamotsu Abe, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Tsuyoshi Yamada, Shinji Okazaki

Photonics West 2017 | Copyright © Gigaphoton Inc.

Agenda

Introduction

HVM Ready System Progress

- Configuration and Key Component Technology
 - EUV Chamber System
 - Driver Laser and PPL System
 - Pre-pulse Technology
- Latest System Update
- Higher Power EUV Source Development

Collector Mirror Lifetime Test and Simulation

- Dummy Mirror test result
- Simulation of Tin Deposition

Study of 500W Power EUV Source

Summary

INTRODUCTION

GIGAPHOTON

EUV Lab. (Hiratsuka, Kanagawa) New Head Office (2017/ 7 Open office) Product: Light Source for Microlithography Established: August 2000 Annual sales: around \$ 300 M more than 60% (2015,2016) Market share: around 700 persons Employee: Head office: Oyama -shi, Tochigi, Japan MGARHOTON

2016 Lithography Source Business Highlights

43

DUV Business

- In 2016, Gigaphoton achieved 60% share in DUV market
- Achieved 10,000 Kiloliter Ne Gas annual reduction
- Announced a new Green Innovation Roadmap with new environmentally friendly and economical technologies

EUV Business

- Began integration of Pilot system for scanner integration
- >100W average power with 5% CE on Pilot system
- Demonstrated 250W capabilities with 4% CE at 100KHz

GIGAPHOTON CONFIDENTIAL | DOC#: GC1L16-273

New Laser Brand for New Application

GIGANEX

VITECHNOLOGY

High power Excimer Laser for LCD Annealing

XeF GT480XZ KrF GT600KZ

Proto#1:GT480XZ2016/3Ploto#2:GT600KZ2016/7

	GT480XZ	GT600KZ
Wavelength	351 nm	248 nm
Output Energy (Max.)	80 mJ	100 mJ
Output Power	480 W	600W
Pulse Duration	40 – 50ns	40 – 50ns
Repetition Rate	6000Hz	6000Hz
Pulse Energy Deviation	Sigma < 2.0%	Sigma < 2.0%

HVM READY SYSTEM PROGRESS

Gigaphoton LPP Source Concept

- High ionization rate and CE EUV tin (Sn) plasma generated by dual-wavelength shooting via CO₂ and pre-pulse solid-state lasers
- 2. Hybrid CO₂ laser system with short pulse high repetition rate oscillator and commercial cwamplifiers
- 3. Tin debris mitigation with a super conductive magnetic field
- 4. Accurate shooting control with droplet and laser beam control
- Highly efficient out-of-band light reduction with grating structured C1 mirror

Current EUV Sources at Gigaphoton

Slide 11

Target System Specification

		Proto#1	Proto#2 Key Technology	Pilot#1 HVM Ready
Target Performance	EUV Power	25W	>100W	250W
	CE	3%	> 4%	> 5%
	Pulse Rate	100kHz	100kHz	100kHz
	Output Angle	Horizontal	62°upper	62°upper
	Availability	~1 week	~1 week	>75%
Technology	Droplet Generator	20 - 25 <i>µ</i> m	< 20 <i>µ</i> m	< 20 <i>µ</i> m
	CO ₂ Laser	5kW	20kW	27kW
	Pre-pulse Laser	picosecond	picosecond	picosecond
	Collector Mirror Lifetime	Used as development platform	10 days	> 3 months

Latest LPP Source Systems Experiment Update

February 2, 2017

Latest LPP Source Systems Experiment Update

Proto#2: 250W with 4% CE at 100KHz

Layout of 250W EUV Light Source Pilot #1

First HVM EUV Source

• 250W EUV source

Оре	erational speci (Target)	HVM Source				
	EUV Power		> 250W			
Perform	CE		> 4.0 %			
ance	Pulse rate		100kHz			
	Availability		> 75 %			
	Droplet generator	Droplet size	< 20mm			
Techno	CO2 laser	Power	> 20kW			
logy	Pre-pulse laser	Pulse duration	psec			
	Debris mitigation	Magnet, Etching	> 15 days (>1500Mpls)			

Pilot System EUV Chamber

Pilot System EUV Chamber

Pilot System Droplet Generator Technology Transfer

High speed droplet generator technology was successfully transferred from Prototype to the Pilot system

Droplet Status

Pilot System Droplet Generator Lifetime Improvements

Lifetime of New Droplet Generator for Pilot#1 extended to more than 200 hours

Pilot System Driver Laser and PPL System

4 x CO₂ Laser Amplifier Modules

104

<1330

Elactricity

ette

Oscillator/PPL Module

- The mist shape of a picosecond pre-pulse is different from that of a nanosecond
- Nano-cluster distribution could be a key factor for high CE

Modeling nanosecond pre-pulses

~ 10 ps pre-pulse "Disk like target"

H. Mizoguchi, Dublin (2013)

RALEF simulations

Evolution of Sn density profile for 10 ns pre-pulse

"Advances in computer simulation tools for plasma-based sources of EUV radiation"

V.V. Medvedev^{1,2}, V.G. Novikov^{1,3}, V.V. Ivanov^{1,2}, et.al.

¹ RnD-ISAN/EUV Labs, Moscow, Troitsk, Russia

² Institute for Spectroscopy RAS, Moscow, Troitsk, Russia

³ KeldyshInstitute of Applied Mathematics RAS, Moscow, Russia

Modeling picosecond pre-pulses

~ 10 ps pre-pulse "Dome like target"

H. Mizoguchi, Dublin (2013)

RALEF simulations

Evolution of Sn density profile for 10 ps pre-pulse

"Advances in computer simulation tools for plasma-based sources of EUV radiation" V.V. Medvedev^{1,2}, V.G. Novikov^{1,3}, V.V. Ivanov^{1,2}, et.al.

¹ RnD-ISAN/EUV Labs, Moscow, Troitsk, Russia

² Institute for Spectroscopy RAS, Moscow, Troitsk, Russia

³ KeldyshInstitute of Applied Mathematics RAS, Moscow, Russia

time

In an experiment device, we observed **5.5% CE** under optimized conditions. This was a **17% increase** from our old champion data (CE = 4.7%).

Experiment Device

Pilot System Driver Laser and PPL System Improvements

Pilot System Driver Laser and PPL System Improvements

Pilot System Driver Laser and PPL System

>5% CE was achieved due to the greatly improved CO_2 beam profile

Greatly improved evenness in beam profile allows for more uniform and efficient ionization of droplets – thus resulting in higher CE

Previous CO₂ beam profile was very uneven and hence less efficient by comparison

Pilot System Droplet Generator

LPP EUV Source Shooting Control System

Pilot#1 System in Operation

Photonics West 2017

Slide 29

Pilot#1 System in Operation

System performance: Summary

Major achievements since last ERM(Executive review meeting)

- 99.4% die yield was achieved.
- 64% availability was confirmed in 2 week operation.
- Magnetic debris mitigation performance has been improved by heat management improvement.
- Collector lifetime test has been started.

	Sep-16	Oct-16	Mar-17	Apr-17	
Average power at IF	100W	111W	80W	85W	
Dose error (3 sigma)		0.15%	0.08%	0.04%	
Die yield (< 0.16%)		92.3 %	97.7 %	99.4 %	
Operation time	5h	22h	204h	143h	
Pulse Number	1 Bpls	4Bpls	28Bpls	19Bpls	
Duty cycle	95%	95%	75%	75%	
In-band power	105W	117W	107W	113W	
Dose margin	30%	25%	25%	35%	
CE	5.0%	4.9%	4.5%	4.4%	
Availability 4wk (2wk)	13%	17%	40% (64%)	32%	
Collector lifetime	-	-	-	-10%/Bpls	
Repetition rate	50kHz	50kHz	50kHz	50kHz	
CO2 power	9.1kW	9.5kW	9.8kW	12kW	
	2.40	Last ERM	Availability potential test	Collector test	

Typical test data

GIGAPHOTON CONFIDENTIAL | DOC#: ED17L-042

Dose stability performance (Apr.-17)

	Pertormance
Average power at IF	85W
Dose error (3 sigma)	0.04%
Die yield (< 0.16%)	99.4 %
Operation time	143h
Pulse Number	19Bpls
Duty cycle	75%
In-band power	113W
Dose margin	35%
CE	4.4%
Availability 4wk	32%
Collector lifetime	-10%/Bpls
Repetition rate	50kHz
CO2 power	12kW

Note

Burst pattern: 1000ms ON, 333ms OFF Dose error: including pre-exposure phase(10ms) Die yield: defined by 0.16% dose error

Dose error was mainly due to droplet combination failure and it was improved by droplet generator improvement(but not perfect).

GIGAPHOTON CONFIDENTIAL | DOC#: ED17L-042

Availability potential test

2 week availability potential test was done. Availability was 64% and idle time was 25%. Availability is potentially achievable at 89%.

<u>Dose error</u>: System stopped at > 2% Dose error (3 sigma) /10kpls slit and error was not recovered by automatic function <u>Idle time</u>: Time for waiting operator.

24 hour x 7 days definition Unmanned operation between 9pm thru 8am

System stop event table

MTTR: 2.8h

Day	Event	Repair time	Root cause	Countermeasure
2	Dose Error	1.25h	25% dose margin is not sufficient	Dose margin 25% -> 28% New shooting control will be applied at Jun.
3	Sensor Error	3h	Sensor reliability	New sensor will be applied (TBD).
5	Dose Error	-	Droplet combination failure	Countermeasures will be applied at Jul.
6	Dose Error	1.25h	Shooting control algorism	Same as Day 2 countermeasure
8	Dose Error	0.25h	28% dose margin is not sufficient	Dose margin 28->35% . Same as Day 2 countermeasure.
10	Dose Error	3.75h	Droplet position instability due to particle issues.	Countermeasures are going on.
13	Dose Error	4.25h	Mirror damage in BTS/Beam transfer	Replacement to
14	Dose Error	11.25h	system) for new mirror evaluation.	conventional mirror

GIGAPHOTON CONFIDENTIAL | DOC#: ED17L-042

COLLECTOR MIRROR LIFETIME TEST AND SIMULATION

Latest LPP Source Systems Experiment Update

Currently 2 prototype high power EUV light sources are being used for experiments

Proto#1 POC in Power Scaling and Debris Mitigation

Proto#2 High Power Experiment

HVM Collector Mirror Specifications

Size Φ412mm
Weight 22kg
Collector efficiency >74%
Collector reflectivity >48%
Grating structure

Measured IR reflectivity: 0.37%

SPIE Advance Lithography 2017

KEY TECHNOLOGY

Debris Mitigation

Gigaphoton's Magnetic Debris Mitigation concept

37

DOC#: CT16L-043

November 4, 2016

Slide

Debris Mitigation and Capping Layer Evaluations by Dummy Mirror

l Purpose

- Evaluation of tin deposition distribution on the collector mirror
- Method
 - Dummy collector mirror (no coating)
 - Sampling plate (sample coupon) size: 15mmx15mmx0.7mmt material : Si plate (46 pieces)

+multi layer (Si/Mo) + Capping layer

- Analysis after test
 - Surface condition : SEM
 - Deposited tin thickness : XRF
 - Capping layer thickness: TEM

SPIE Advance Lithography 2017

Collector Lifetime Status through Dummy Mirror Test

Difference of Deposition on the Sample Coupon of Dummy Mirror

Capping layer disappearance Blister generation Capping layer deformation Blister generation Capping layer survived No blister generation

SPIE Advance Lithography 2017

Preliminary Result of Real Collector Mirror on Proto#2

<u>15. Feb.2017 : 325 Mpls,</u> <u>100W in burst, Duty 26%, 26W (ave)</u>

SPIE Advance Lithography 2017

Improvement of Collector Lifetime by Simulation

- 1. Back Diffusion Mitigation
 - ► H₂ Gas Flow Design
 - Cooling System
- 2. Shooting Accuracy Improvement
 - Reduction of Target Misses

March 1, 2017

-1

SPIE Advance Lithography 2017

42

STUDY OF 500W POWER EUV SOURCE

SPIE Advance Lithography 2017

High Power EUV Source for High NA EUV exposure tool

											Lithography	R(nm)*	NA	//n (nm)	(W)
E	UV ave	e.Pov	ver[W]			Conver	rsion Efficie	ency [%]						(iiiii)	(00)
	@10	0kHz	Z	2%	3%	4%	5%	6%	7%	8%	KrF dry	102	0.85	248	40
	15		1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ArF dry	73	0.93	193	45
	50		5	19.1	28.7	38.2	47.8	57.3	66.9	76.4	F ₂ drv	69	0.80	157	-
	100		10	46.4	69.6	92.8	<u>).0</u>	139.2	162.4	185.6	A F :	50	1.05	10.4	00
	150		15	73.7	110.6	147.4	1 .3	221.1	258.0	294.8	Arr immersion	50	1.35	134	90
	200		20	101.0	15,	202.0	25	303.0	353.5	404.0	EUV	14	0.33	13.5	>250
	250	$\overline{}$	25	128.3	192.5	256.6	320.8	384.9	449.1	513.2	EUV (High NA)	7	0.6	13.5	>500
5	300	Ν	30	155.6	233.4	311.2	389.0	466.8	544.6	622.4	201 (11911 0 4		0.0	10.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
<u>ے</u>	350	er	35	182.9	274.4	365.8	457.3	548.7	640.2	731.6					
So So	400	Ň	40	210.2	315.3	420.4	525.5	630.6	735.7	840.8				6-	N 🔶 🚽
ner	450	ď.	45	237.5	356.3	475.0	593 8	712.5	831.3	950.0					
Ē	500	Ne	50	264.8	397.2	529.6	662.0	794.4	926.8	1059.2					
sel	550	r a	55	292.1	438.2	584.2	730.3	876.3	1022.4	1168.4		HV	MI	HVM2	HVM3
e la	600	ase	60	319.4	479.1	638.8	798.5	958.2	1117.9	1277.6					
02	650	2 li	65	346.7	520.1	693.4	866.8	1040.1	1213.5	1386.8	EUV Power	250	WC	300W	500W
0	700	8	70	374.0	561.0	748.0	935.0	1122.0	1309.0	1496.0					
	750		75	401.3	602.0	802.6	1003.3	1203.9	1404.6	1605.2	Pulse Rate	100	kHz	100kHz	100kHz
	800		80	428.6	642.9	857.2	1071.5	1285.8	1500.1	1714.4					
	850		85	455.9	683.9	911.8	<u>1139.8</u>	1367.7	15 <mark>95.7</mark>	1823.6	CE	4.5	5%	5%	5%
	900		90	483.2	724.8	966.4	1208.0	1449.6	1691.2	1932.8					
	950		95	510.5	765.8	1021.0	1276.3	1531.5	1786.8	2042.0	CO ₂ Laser Powe	r 2.5	W	25kW	40kW
	1000		100	537.8	806 7	1075 6	1344 5	16134	1882 3	2151 2		201			

SPIE Advance Lithography 2017

Study of 50kW CO2 Laser Design

Next Generation High Power EUV Source Development

Basic Experiment in 2013

1st Amplifier installation in 2015

Amplifier system installation in 2016

in cooperation with A

SPIE Advance Lithography 2017

Slide 46

Next Generation Pre-pulse Laser

- \checkmark Pre-pulse laser technology is one of the most important component of HVM EUV Source.
- ✓ Recently we achieved 250W operation with 4% CE on Prot#2. Also Pilot#1 system is on operation around 100W with 5% CF
- \checkmark Hilase laser is one of the candidate on pre-pulse laser.

Requirement of Next Generation Pre-pulse Laser

ltem	Current Specification	Target
Pulse width	12ps+/-4ps	<12ps +/-4ps
Wavelength	1064nm+/-0.5nm	1064nm or 1030um
Pulse energy	>1mJ at 100kHz	>2mJ at 100kHz
Pulse energy stability	<3% at sigma	<1% at sigma
Repetition rate	Single to 120kHz	Single to 120kHz
Timing jitter	<50ns at P-P	<20ns at P-P
Beam profile	10mm+/-1mm at 1/e^2	10mm+/-1mm at 1/e^2
Pointing stability	<50urad at 3 sigma	<50urad at 3 sigma
Beam divergence	<210urad	<210urad
Mechanical/Electrical Interface	-	TBD
Service ability	-	TBD
Delivery / Price		TBD

0.5 kW Compact Picosecond Laser Solution for high-tech material processing

High-tech industrial and biological laser applications such as precise cutting and drilling of metals, plastics, semiconductors and glasses, and microstructuring of surfaces, etc., require the development of high average power picosecond laser systems. State-of-the-art ultrashort pulse OPA systems also need a high beam quality picosecond pump source for reliable operation.

We offer small-footprint, thin-disk-based, regenerative amplifiers including a fiber-based front-end and pulse compressor producing train of < 2 ps long pulses (1030 nm) in fundamental spatial mode (M²<1.3).

Average power and pulse repetition rate can be modified according to the customer's needs up to 0.5 kW and 800 kHz, respectively. Optionally, the output can be converted to the 2rd, 3rd or 4th harmonic.

Technical data:

- Default wavelength 1030 nm
- Average power up to 0.5 kW
- Pulse energy up to 5 mJ
- Repetition rate up to 800 kHz.
- M² < 1.3
- Pulse duration < 2 ps</p>
- Energy stability < 1.5% RMS</p>

Benefits:

- Small footprint High-beam guality
- Fiber front-end
- Stable bulk grating compressor
- Optional wavelength: 515 nm; 343.3nm; 257.5 nm

For more information please contact Mr. Oskar Lazansky (technology transfer office):tazansky@fzu.cz

47

Corroboration with Mitsubishi Electric / HiLASE Project

Gigaphoton appreciate corroboration with Mitsubishi Electric / Hilase project !

48

SPIE Advance Lithography 2017

SUMMARY

SPIE Advance Lithography 2017

Summary

- Pilot#1 is up running and its demonstrates HVM capability;
 - EUV power recorded at113W average (85W in burst stabilized, 75% duty) with 5% conversion efficiency for 143hours operation in May 2017.
 - High conversion efficiency (5% level) is realized with several key engineering efforts.
 - Pilot#1 system recorded Availability was 64% and idle time was 25%. Availability is potentially achievable at 89% (2weeks average).
- Long-life Collector Mirror mitigation test is in progress;
 - Superior magnetic mitigation (= 0.5%/Gp) has been demonstrated above 100W level operation with dummy mirror test.
 - Full scale C1 mirror life test is on going.
 - Next target is >100W average power with high duty cycle operation with C1 fullscale mirror lifetime demonstration (Expectation from simulation: < 0.2%/Gp).

SPIE Advance Lithography 2017

Further scalability scenario toward 300/500W EUV source power is under investigation

Slide 50

Acknowledgements (NEDO ALMERT

Thank you for co-operation:

Mitsubishi electric CO₂ laser amp. develop. team: Dr. Yoichi Tanino*, Dr. Junichi Nishimae, Dr. Shuichi Fujikawa and others

Dr. Akira Endo :HiLase Project (Prague) and Prof. Masakazu Washio and others in Waseda University Dr. Kentaro Tomita, Prof. Kiichiro Uchino and others in Kyushu University

Dr. Jun Sunahara, Dr. Katsunori Nishihara, Prof. Hiroaki Nishimura, and others in Osaka University * The authors would like to express their deepest condolences to the family of Dr. Yoichi Tanino who suddenly passed away on February 1st, 2014. We are all indebted to his incredible achievements in CO₂ amplifier development. He will be missed very much

Thank you for funding:

EUV source development funding is partially support by NEDO (New Energy and Industrial Technology Development Organization) in JAPAN

Thank you to my colleagues:

EUV development team of Gigaphoton: Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Tsuyoshi Yamada, Taku Yamazaki, Takashi Saitou and other engineers

SPIE Advance Lithography 2017

THANK YOU

SPIE Advance Lithography 2017 | Copyright © Gigaphoton Inc.