RESEARCH, PAST, PRESENT AND FUTURE

21/18

TNO

1500

innovation.

for life

Norbert Koster, Edwin te Sligte, Arnold Storm, Herman Bekman, Jacques van der Donck, Diederik Maas, Jochem Janssen, Rogier Verberk

.

OUTLINE

- > Past
- Present
- > Future
- > Conclusion

PAST

- > The early years
- > Carbon growth
- Clean vacuum
- > DGL
- Mitigation (EToH/O₂)
- Cleaning with H*/H+

THE EARLY DAYS

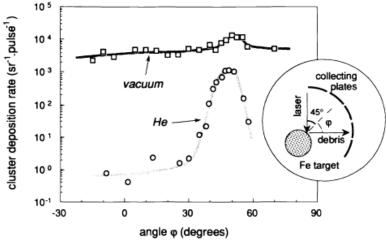
Control of debris production of laser plasma sources with high average XUV power

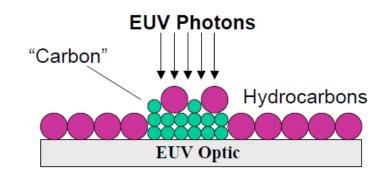
F. Bijkerk, E. Louis, L. Shmaenok, H.J. Voorma, M.J. van der Wiel, I.C.E. Turcu*, G.J. Tallents*

FOM-Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands,

*Rutherford Appleton Laboratory, Chilton, Didcot, UK

SPIE Vol. 1848 Laser-Induced Damage in Optical Materials: 1992 / 517



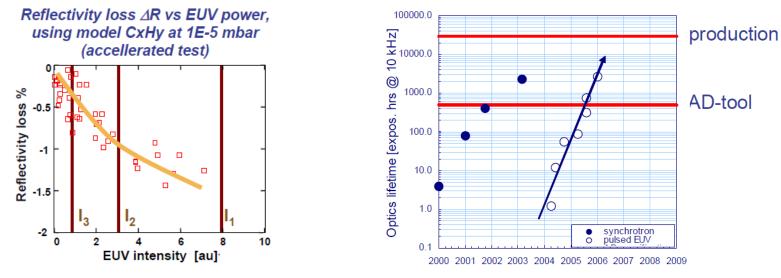

Fig. 1. Deposition rate of clusters in vacuum and in He at sub-atmospheric pressure. The inset shows the experimental set-up.

TNO innovation for life

CARBON GROWTH

- > Was one of the showstopper for EUV lithography
 - Sources:
 - Residual gasses from vacuum
 - Resist outgassing
 - Impurities in gas supply
 - > Greases etc. from moving parts

"Carbonizing Regime"

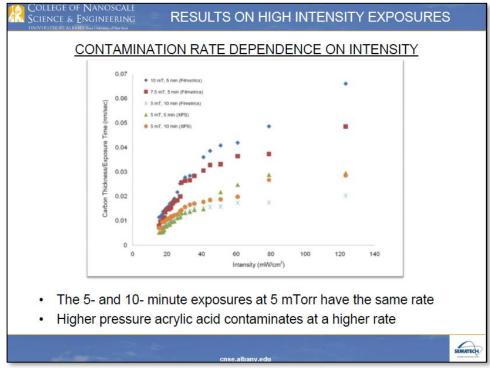


Carbon Growth Induced by Cracking Absorbed Hydrocarbon Molecules.

Graham et al, EUV contamination workshop 2003

CARBON GROWTH

> Scales with partial pressure and type of hydrocarbon, EUV intensity and EUV pulse shape



innovation for life

H. Meiling *et al*, EUVL symposium 2006

CARBON GROWTH

Thomas et al, EUVL symposium 2010

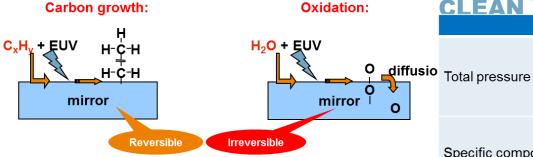
CARBON GROWTH

- Reducing carbon growth:
 - Minimize residual hydrocarbons (Ultra Clean vacuum, grease free design)
 - Protect sensitive surfaces
 - Mitigation (oxidation, reduction)
 - Cleaning

Moderate

 $(e.g. < 10^{-1} mbar)$

UCV


ULTRA CLEAN VACUUM (UCV)

Oxidation:

One of the problems: Carbon contamination of EUV mirrors

DIFFERENCE BETWEEN ULTRA **HIGH VACUUM AND ULTRA CLEAN VACUUM**

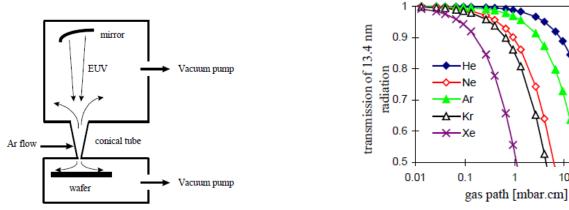
UHV

This happens at hydrocarbon pressures below 1E-12 mbar!

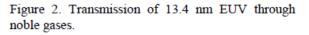
Specific components Extremely low Ultra low $(e.g. < 10^{-10} \text{ mbar})$ (e.g. hydrocarbons) $(e.g. < 10^{-12} \text{ mbar})$

Extremely low

(e.g. < 10⁻⁹ mbar)


Koster et al, AVS annual symposium 2014

DGL


Mitigation of surface contamination from resist outgassing in EUV lithography

B.M. Mertens^a, B. van der Zwan^a, P.W.H. de Jager^a, M. Leenders^a, H.G.C. Werij^a, J.P.H. Benschop^b and A.J.J. van Dijsseldonk^b ^aTNO Institute of Applied Physics, P.O. Box 155, 2600 AD Delft, The Netherlands ^bASML, De Run 1110, 5503 LA Veldhoven, The Netherlands

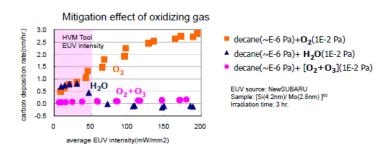
MNE proceedings 1999

Figure 1. Principle of the dynamic gas lock system in an EUV tool

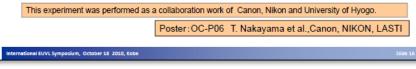
10

100

One of the enablers for EUV Lithography. One of the reasons for ASML to start with EUV!



MITIGATION

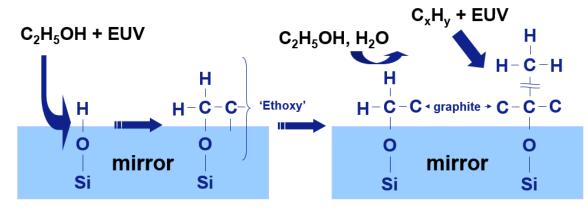

System Technology

Optics lifetime/Carbon deposition Mitigation Canon


Carbon deposition on EUVL exposure tool optics degrades throughput and imaging quality. Mitigation method of carbon deposition has been developed.

 O₂+O₃ is effective as the mitigation gas in the region of HVM Tool EUV intensity.

Miyaki et al, EUVL symposium 2010


Kawai et al, EUVL symposium 2010

MITIGATION

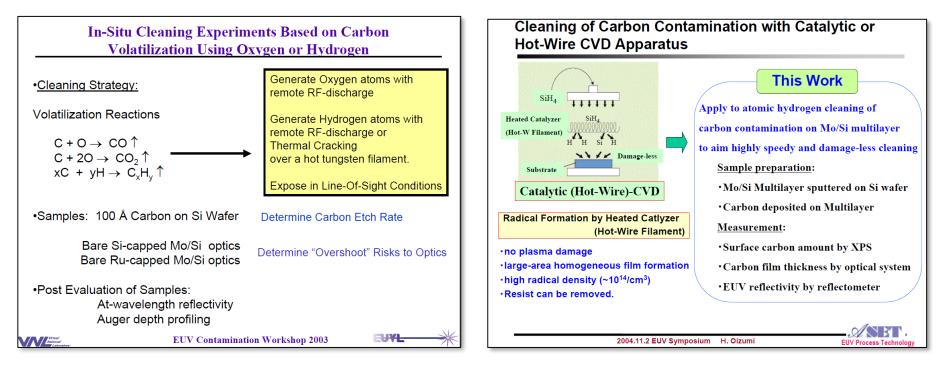
- Heavy hydrocarbons disrupt process → slowly replace volatiles with non-volatiles
- Balancing very difficult

Prevention of oxidation: admission of EtOH* (Klebanoff et al)

•EtOH + EUV creates a void-free monolayer of carbon •surface now is hydrophobic, therefore strongly reduced H₂O-induced oxidation •C-growth continues due to contamination hydrocarbons!

Balancing gas phase chemistry is the trick!

MNE 2001 N. Koster/16

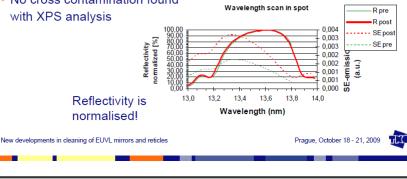


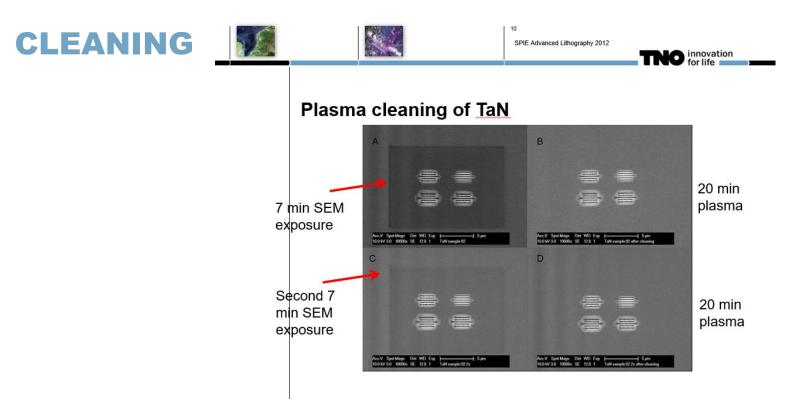
innovation for life

Koster et al, MNE 2001

CLEANING

CLEANING


- Shielded Microwave Induced Remote Plasma
- Hydrogen as active species for metal capping layer
- Oxygen for oxide capping layer


SMIRP Cleaning Results

- Over-exposure of sample EUV multilayer mirror, equivalent to 11.6 nm C-removal:
- No reflectivity loss
- No degradation of capping layer
- No cross contamination found

	Pre	Post	Difference	
Date	17-10-08	23-09-2009	48,7	weeks
R (%)	100,00	99,997	0,00	ΔR
CTW96 (nm)	13,612	13,607	-0,005	nm
CTW50 (nm)	13,555	13,542	-0,013	nm
FWHM (nm)	0,581	0,584	0,002	nm
SE peak (nm)	13,36	13,34	-0,027	nm

Koster et al, EUVL 2009

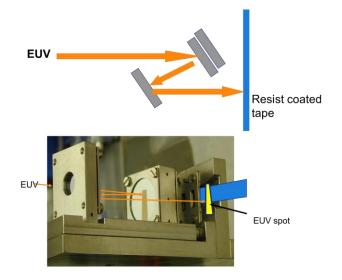
80 nm lines in 400 nm TaN, with approxiamately 2 nm C

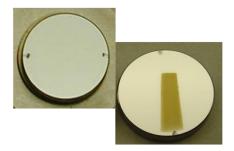
o innovation for life

Koster et al, SPIE 2012, 83220R

PAST CONCLUSION

- > Major showstopper for EUVL is solved
- > Optics lifetime for carbon contamination under control by clean vacuum and in-situ cleaning tools
- > Reticle contamination and lifetime still an issue
- Only one working point where EUV intensity, CxHy pressure, O2 pressure are balanced. Otherwise either carbon growth or oxidation will occur
- Surface coverage by light hydrocarbons is not stable. Light hydrocarbons will be replaced by heavy hydrocarbons over time

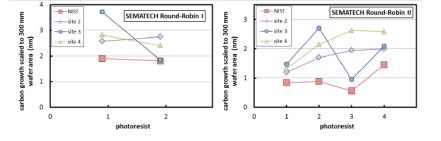

PRESENT


- Resist outgassing
-) EBL0/1/2
- > Collector lifetime
- > Reticle lifetime
- > Pellicle lifetime

RESIST OUTGASSING

- First proposal for resist testing by TNO/ASML/Carl Zeiss in 2006
- > Procedure by ASML established in 2007

Before and after exposure \rightarrow DR/R = -33% \rightarrow Carbon spot mimics EUV beam shape


19 | EUV optics life time research, past, present and future

RESIST OUTGASSING

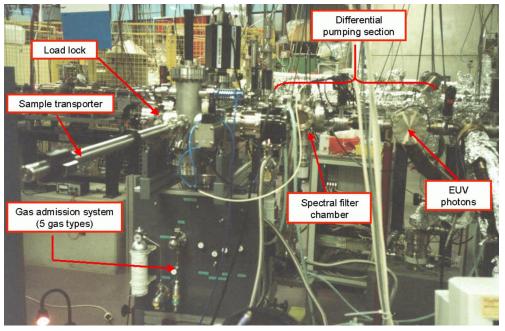
- Many sites invest in resist outgassing test set-ups according to ASML procedure
- Large differences between sites and excitation method (EUV or e-beam)
- 2015 ASML drops resist outgassing rate specifications
- New metal oxide resists evolve, contamination issues not known.
- 2017 IMEC to receive DGL membrane, enabling metal oxide resist testing

Sematech outgas testing Round Robins

Organized by Karen Petrillo and Jaewoong Sohn, Sematech

Only sites 2 and 4 showed similar trends in Round Robin II NIST values consistently lower than others in both Round Robin I & II

Tario et al, EUV workshop 2014, Maui


Physical Measurement Laboratory

OPTICS LIFETIME @TNO

- Beamline at Bessy II
- > Semi continuous EUV beam
- > Established 2001
- > Still operated by PTB

TNO/Carl Zeiss/PTB

OPTICS LIFETIME @TNO

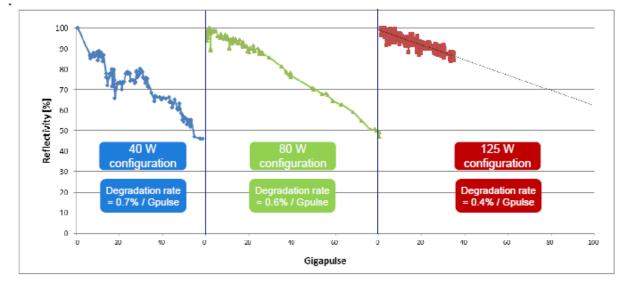
TNO/Carl Zeiss

EBL established 2006 Xe source

TNO

EBL2 realized 2017 Sn source

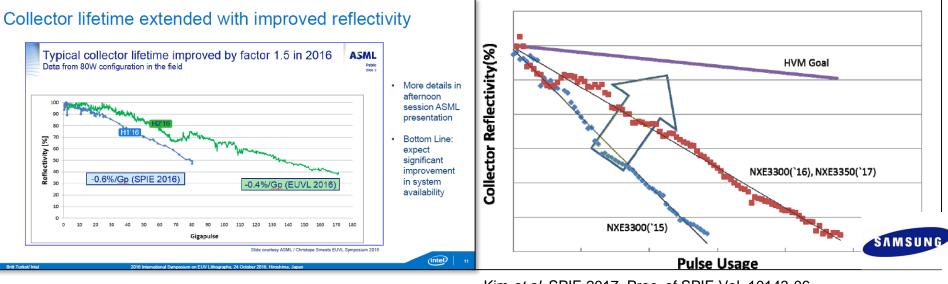
EBL2 KEY PERFORMANCE


- > Clean background environment to have full control of environmental conditions
- In tool surface analysis by XPS and imaging ellipsometry
 - > EUV reflectometry will be added later
- > Flexible system: custom samples, gases, geometries possible
- > Accepts EUV reticles and returns them in NXE compatible state

Power	>1 W in 2% BW @ 13.5 nm ("IB") (~10 W 10-20 nm)	
Power density	>1 W/mm ² IB in focus	
Spot size	1 – 30 mm diameter (power density scales)	
Rep rate	1 Hz – 10 kHz (standard 3 kHz)	
Sample size	Max 152x152x20 mm (reticle + pellicle possible)	
Dose control	<20 % in free running experiment	
Uninterrupted exposure time	>100 hours	

TNO innovation for life

COLLECTOR LIFETIME


- Cymer increased lifetime of collector with increasing EUV powers
- Cleaning of Sn in-situ shown (2014) by ASML

Pirati et al, SPIE 2016, Proc. of SPIE Vol. 9776 97760A-8

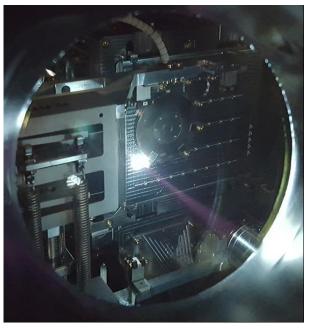
COLLECTOR LIFETIME

Turkot et al, EUVL symposium 2016

Kim et al, SPIE 2017, Proc. of SPIE Vol. 10143-06

PRESENT CONCLUSIONS

- > Collector lifetime moving in the right direction
- Reticle defectivity almost up to HVM specifications but still a problem for HVM
- > Pellicle is a must to ensure HVM production

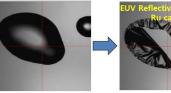

FUTURE

- > EUV induced plasma
- > Surface chemistry
- Material/photon/ion interaction
- > 1 kW EUV source

EUV INDUCED PLASMA

- Increasing powers and power densities will generate ions and radicals →self cleaning
- Ion energy can reach up to tens of eV (sputtering)

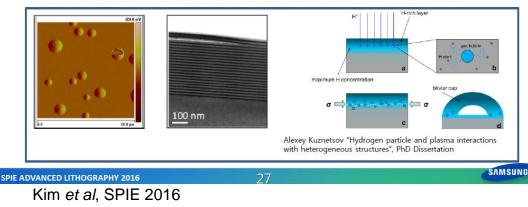
H2 plasma in EBL2


MASK

Mask - Lifetime

After exposure of ~40,000 wafers, what happened at the mask

- Bubble formation at high powers
- Damage mechanism similar to fusion technology?
- Collector lifetime at high powers?
- Pellicle needed for defectivity



o innovation for life

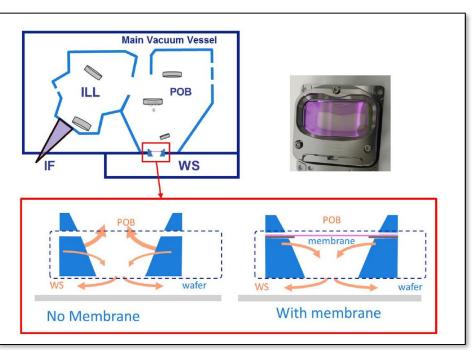
Mask bulge is formed by hydrogen ion penetration and it will be prevented by improving blank fabrication process.

Public

Slide 24

PELLICLE

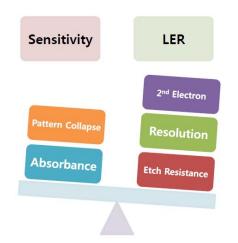
- Much work already done
- How about lifetime? Increasing EUV powers \rightarrow heating, warpage, pinholes
- Printing effects


Prototype pellicle on early integration mounting tooling

Fomenkov et al, EUVL workshop 2016

RESIST

- New formulations
- > Nano particles
- Metal oxides
- DGL membrane to solve outgassing issues of metallic components into optics region

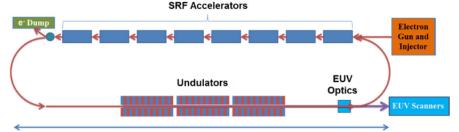

Improvements in resist performance towards EUV HVM Oktay Yildirim et al, ASML, Proc. of SPIE Vol. 10143, 101430Q

RESIST

Resist Process - Extendibility

So many conflicting factors...

Metal-oxide resist development needs to be expedited


22

1 KW EUV SOURCE

- Is a FEL an option?
 - > Beam delivery and beam splitter
 - Reliability
 - Vptime
- > How far can we stretch LPP sources?
 - > Droplet rep rate
 - > Laser rep rate
 - Conversion efficiency
 - Sn contamination

More Powerful & Efficient EUV Source

• Key components of a free-electron laser (FEL) EUV source

~100 m

100				
ltem	Target	Motivation/Implication		
Power	>20 kW	Ten 1kW scanners (50% transport loss)		
Availability	>99%	Some redundant system hardware required		
CoO	~\$250M CapEx, ~\$20M OpEx	2x better than CoO for 10 LPP sources		
General Configuration	Energy Recovery LINAC @ ~2K SASE Output	Maximize efficiency & minimize cost		
Timing	TBD	To intercept high-NA EUV scanner insertion		

Ref: E. Hosler et al., "Considerations for a free-electron-laser based extreme-ultraviolet lithography program," Proc. SPIE <u>9422</u>, 94220D (2015). 2016 EUV Lithography Symposium

Wood et al, EUVL symposium 2016

CONCLUSION

- > We are moving into HVM, with associated problems:
 - Reliability
 - Increasing EUV powers
- Contamination control went from simple carbon contamination to complex photon/material interaction
 - > New cap layers needed?
 - Material research
- > We are almost at the end of the tunnel and the light is getting brighter

ACKNOWLEDGEMENTS

Everybody working in the EUV community, without you this could not have

innovation for life

THANK YOU FOR YOUR ATTENTION

1111 111

The state of

innovatio

for life

Take a look: TIME.TNO.NL