Ultrahigh-resolution EUV Coherent Diffractive Imaging and Proposed EUVL Tools

Henry Kapteyn, Margaret Murnane, Matt Kirchner, Xiaoshi Zhang Dennis Gardner, Christina Porter, Elisabeth Shanblatt, Michael Tanksalvala, Robert Karl, Charles Bevis, Daniel Adams, Giulia Mancini

JILA and KMLabs

VUV/EUV/SXR Metrology

ARPES

Imaging

Control over spectral, temporal & polarization state Integrated engineered systems in VUV, EUV

Ready for metrology: VUV-EUV

Harnessing spatial coherence of HHG

- 1st sub-wavelength full-field EUV imaging: record @ 13.5nm
- Quantitative elemental/chemical maps

Advances in VUV/EUV/soft X-ray harmonics

- Buried layer imaging

EUVL Tools based on high harmonics

- Mask inspection: CDI-based mask review microscope is faster, cheaper than Zeiss AIMS®
- Materials characterization: dopant profile, thin film metrology, sub-surface imaging, photolectron spectroscopy for in-situ materials growth, photovoltage spectroscopy

Outline

Y-Fi™ VUV

Applications relevant to EUVL

Precise machining/material modification using fs fiber laser

- Surface or sub-surface
- Cleaner cuts with fs
- Soft/hard materials
- Deep trenches

Patterned/bare wafer inspection

- Coherent laser-like beam
- Adjustable wavelength (DUV, VUV, EUV)
- Adjustable penetration depth
- Adjustable polarization (linear to circular)
- Quantitative elemental, chemical mapping
- Ultrasensitive to contaminants, roughness

Mask inspection @ 13.5nm

- Coherent beam -> higher resolution (<12.6nm)
- Wavelength agile, adjustable penetration depth
- Image buried layers -> overlay metrology
- X10-100 faster, x1000 lower cost/image vs Zeiss AIMS[®]
- Technology scalable to 6.7nm and 1nm

Materials characterization

- Monitor in-situ growth: reflection/photoemission
- Thin films, elastic properties, ellipsometry
- Magnetic materials, band bending, band

9/11/17

© KMLabs Inc. 2017— EUVL Workshop Berkeley. All rights reserved.

Current conversion efficiency from laser to HHG energy/power

High pressure waveguide Excellent coherent buildup and flux

30nm HHG beam (2002)

13nm HHG beam (2004)

3nm HHG beam (2010)

1nm HHG beam (2012)

Science **280**, 1412 (1998) Science **297**, 376 (2002) PNAS **106**, 10516 (2009) Science **336**, 1287 (2012) Science **348**, 530 (2015) Science **350**,1225 (2015)

ulses produce oherent x-rays Science **280**, 1412 (1998) Science **297**, 376 (2002) PNAS **106**, 10516 (2009) Science **336**, 1287 (2012) Science **348**, 530 (2015) Science **350**,1225 (2015)

Current conversion efficiency from laser to HHG energy/power

1nm Soft X-ray

Science 280, 1412 (1998) Science 297, 376 (2002) PNAS 106, 10516 (2009) Science 336, 1287 (2012) Science 348, 530 (2015) Science 350, 1225 (2015)

Revolution in coherent X-ray sources

Facility scale

- Synchrotron and free electron lasers
- EUV to 12 keV (EUV to hard X-rays)
- Nano to femto time resolution
- 5nm spatial resolution CDI
- High flux
- Tunable
- Facility scale beamline access w/support

<u>Tabletop</u>

- High harmonic sources
- mid-IR to 1 keV (EUV to soft X-rays)
- Sub-femtosecond time resolution
- 12nm lateral/3Å axial spatial resolution Medium flux
- Hyperspectral
- Tabletop for easy student/industry access

KMLABS KMLabs XUUSTM: tabletop-scale ultrafast X-ray laser with visible-laser stability

BS KMLabs XUUSTM: tabletop-scale ultrafast X-ray laser with visible-laser stability EADING IN ULTRAFAST

10

KMLabs XUUS[™]: a truly integrated source

• Truly Integrated HHG light source

2.5 m

- Automatic laser beam alignment
- A complete set of beamline modules to delivery the exact EUV beam parameters suited for your application
- Light source and optical components optimized for compatability, best throughput.

© KMLabs Inc. 2017— EUVL Workshop Berkeley. All rights reserved.

BS KMLabs XUUSTM: Product Specifications for Standard 2-10W lasers

Key Specifications:

XUUS Source	ce Product Sp	ecifications		-10		
HHG Wavelength	30 nm		18 nm	13 nm	6.7 nm	
Photon Flux at Source	>5 x10 ¹² ph/sec /1% BW		>10 ¹⁰ ph/sec /1% BW	>1010 ph/sec/1% BW	>10 ⁸ ph/sec	
Driving Lasers	 0.5mJ, <40fs 10kHz, 5W 800 nm 	 0.2mJ <40fs 50kHz, 10W 800 nm 	 2mJ, <40fs 3kHz, 6W 800 nm 	 3mJ, <40fs 3kHz, 9W 800nm 	 2mJ, <50fs 1kHz, 2W 1400 nm 	
	Wyvern 1000-10	Wyvern 500	Wyvern 1000-10	Wyvern 1000-10	Wyvern HE + OPA	
Pulse Duration	HHG produces attosecond pulses or pulse trains depending on the implementation. The FWHM envelope in the simplest implementation is < 15fs using 40fs Wyvern, and <10fs using 21fs DRAGON					
Linewidth	Linewidth variable from 100meV to quasi-continuum (depends on laser parameters)					
Pointing Stability	<5µRad RMS					
Power Stability	<4% RMS (100ms integration time)					
Mode Quality	Near TEM ₀₀					
Divergence	Depends on waveguide diameter, 0.5 - 4 mrad typical					

ALABS Record ultrafast <100fs fiber lasers: small footprint, increased stability, MIR to VUV

Y-Fi™ (and)

KMLabs Y-Fi™: Product Specifications

Parameter	Y-FI ^{te}	Y-FITM HP	Y-FI™ HP Ultra
Pulse Width	<150 fs (<120 fs typical)	<170 fs	<190 fs
Compressor Dispersion Pre-compensation	±20,000 fs ²	±10,000 fs ²	Inquire
Center Wavelength	1035 ± 5 nm	1035 ± 5 nm	1035 ± 5 nm
Pulse Energy	> 0.45 µJ @ 10 MHz	> 3 µJ @ 1 MHz	> 40 ه (ش 1 MHz
Peak Power	> 3 MW, calculated via FROG	> 10 MW, calculated via FROG	> 80 MW, calculated via FROG
Beam Quality	M ² < 1.2	M ² < 1.2	M ² < 1.2
Average Power	> 4.5 W @ 10 MHz	> 20 W @ 10 MHz	> 50 W @ 10 MHz
Repetition Rate	0.5 - 15, 60 MHz	0.5 - 15, 60 MHz	0.5 - 15, 60 MHz
Auto-Correlation Pedestal Content	< 12%	< 15%	< 20%
Background content	< 1.0%	< 1.0%	< 2.0%
Pre-Pulse Contrast	< 0.5%	< 0.5%	< 1%
Post-Pulse Contrast	< 0.5%	< 0.5%	< 1%
Power Stability*	<1% RMS over 12 hours after 30 min warm-up	<1% RMS over 12 hours after 30 min warm-up	<1% RMS over 12 hours after 30 min warm-up
Pointing Stability*	< 10 µRad RMS after 30 min warmup	< 10 µRad RMS after 30 min warmup	Inquire
Operational Temp. Range	16 – 26 °C	16 – 26 °C	16 - 26 °C
Physical Configuration	12*x16*x2.4* (optical head)	12"x16"x2.4" (optical head)	24"x48"x8" (optical head)
Computer Interface	Laptop provided, w/GUI	Laptop provided, w/GUI	Laptop provided, w/GUI
3HG Power	Inquire	> 8 W @ 10 MHz	Inquire
SHG Pulse Duration	Inquire	< 150 fs	Inquire

* Ambient ± 0.5 C

9/11/17

© KMLabs Inc. 2017— EUVL Workshop Berkeley. All rights reserved.

KMLabs Y-Fi™: Temperature Cycling

- Pulse duration over >100 hours of temperature cycling ± 8°C ۲
- Average: 90 fs
- RMS deviation: 2.2 fs •
- **Passive cooling** ۲
- Active cooling better ۲

-1000

HIG has moved beyond demos or POC:

uncovering new materials/nano science

Tr-ARPES: Time & Angle-

Resolved Photoemission

Spin dynamics in magnetic materials

Nanoscale mechanical

properties, energy transport

EUV coherent imaging: a disruptive technology

- Record spatial resolution of 0.9λ: 12.6nm using 13.5nm XUUSTM HHG beams
- Full field imaging of near-periodic structures, with record speed
- Can scale to shorter wavelength, higher resolution, deeper penetration

Revolution in Coherent X-Ray Imaging (CDI)

Advances in coherent diffractive imaging (CDI)

Initial approaches to CDI (2011)

- Required isolated sample or beam
- Simple algorithms
- Average multiple reconstructions
- Transmission mode only

Advanced CDI (2016)

- Ptychographic CDI from overlapping areas
- Robust reflection and transmission imaging
- Quantitative imaging, buried interfaces
- Hyperspectral, multibeam
- Periodic and non-periodic samples with MEP

Ptychography: CDI with multiple diffraction patterns to enhance redundancy

Theoretical resolution depends on numerical aperture (≤1): $\Delta r = \frac{\lambda}{2 NA}$

Rodenburg et al., PRL **98**, 034801 (2007) Thibault et al., Science **321**, 379 (2008) Maiden et al., Ultramicroscopy **109**, 1256 (2009)

High contrast tabletop CDI (λ = 30nm)

- Better contrast images than JILA SEM due to phase contrast imaging
- 3D imaging: spatial resolution 1.3λ horizontal (<40nm), <5Å vertical
- 22nm resolution in transmission (1.6 λ)
- Very rapid 1 minute data acquisition time
- Less damage then AFM or SEM
- Long working distance of 10 cm

Optica **1**, 39 (2014) Science **348**, 530 (2015) Laser Focus World (2015) Ultramicroscopy **158**, 98 (2015) Nano Letters **16**, 5444 (2016) IQT **8**, 18 (2016)

Seeing through buried layers and interfaces

- CDI amplitude image enables imaging of elemental composition through 100nm of Al
- Quantitative non-destructive imaging of elemental & interfacial properties harnessing EUV reflectivity
- Identified interdiffusion of AI into Cu, and formation of thin AI oxide layer on SiO₂

Postdeadline paper, Frontiers in Optics (2015); Nano Letters 16, 5444 (2016)

Nondestructive imaging of diffusion at buried interfaces

- Transmission mode 13.5 nm CDI microscope
- Stability of KMLabs XUUS[™] was critical to demo
- Used a zone plate as a periodic sample
- NA of 0.54 only limited by size and distance to camera

Measure HHG beam intensity to tightly constraint the guess of the illumination and avoid cross-talk between the sample and beam for periodic samples

Gardner et al., Nature Photonics 11, 259 (2017)

Record 1st sub-λ EUV imaging: 12.6nm resolution @ 13.5nm

Record zone plate imaging: synchrotron source (2009)

- Zone plate imaging at λ =13nm: spatial resolution \approx 50nm
- Zone plate imaging at λ =2nm: spatial resolution \approx 12nm
- Chao et al. Optics Express 17, 17669 (2009)

Record EUV imaging for any light source by 2016

- Most powerful 13nm image: 1^{st} sub- λ resolution (0.9 λ , 12.6nm)
- Periodic or non-periodic samples
- High contrast, full field, images of REAL industry-relevant samples
- Quantitative imaging of buried interfaces
- Not yet reached limits in resolution or speed

Miao et al., Science **348**, 530 (2015) Zhang et al., Ultramicroscopy 158, 98 (2015) Shanblatt et al., Nano Letters 16, 5444 (2016) Kapteyn et al, IQT 8, 18 (2016) Gardner et al., Nature Photonics 11, 259 (2017)

Buried layer imaging

Reflection mode HHG CDI

EUV coherent imaging: a disruptive technology

- Record spatial resolution of 0.9λ: 12.6nm using 13.5nm XUUSTM HHG beams
- Full field imaging of near-periodic structures, with record speed
- Can scale to shorter wavelength, higher resolution, deeper penetration

Advances in image quality using HHG CDI

Applications relevant to EUVL

Precise machining/material modification using fs fiber laser

- Surface or sub-surface
- Cleaner cuts with fs
- Soft/hard materials
- Deep trenches

ials

Patterned/bare wafer inspection

- Coherent laser-like beam
- Adjustable wavelength (DUV, VUV, EUV)
- Adjustable penetration depth
- Adjustable polarization (linear to circular)
- Quantitative elemental, chemical mapping
- Ultrasensitive to contaminants, roughness

Mask inspection @ 13.5nm

- Coherent beam -> higher resolution (<12.6nm)
- Wavelength agile, adjustable penetration depth
- Image buried layers -> overlay metrology
- X10-100 faster, x1000 lower cost/image vs Zeiss AIMS[®]
- Technology scalable to 6.7nm and 1nm

Materials characterization

- Monitor in-situ growth: reflection/photoemission
- Thin films, elastic properties, ellipsometry
- Magnetic materials, band bending, band

9/11/17

© KMLabs Inc. 2017— EUVL Workshop Berkeley. All rights reserved.

HHG CDI-based Actinic Mask Review Microscopy: feasibility analysis

© KMLabs Inc. 2017— EUVL Workshop Berkeley. All rights reserved.

Imaging throughput– benchmark based on current work

- High contrast sample: transmission T of zone plate comparable to reflection R of mask
- Imaging throughput will be a function of:
 - Field of view
 - Required resolution
 - Required S/N

Current 13.5nm HHG CDI microscope throughput

- Spot size: <2 μ m dia. (ω_0 =0.75 μ m)
- Laser:
 - 2 mJ, 3 kHz, 22 fs, 785 nm
 - 6 W average power
 - − Prototype 13.5nm XUUSTM
- 11x11 ptychographic scan (7μmx7μm)
- Exposure (2 frames/position): 9 sec
- Readout: 4.2 sec
- Exposure Time (Total): 18 min
- Full exposure readout time: 26 min
- Current Imaging Rate (no optimization attempted):
 - $-1 \mu m^2$ / 30 sec @12.6nm resolution

KMLABS Enhance XUUSTM source brightness

- Prototype 13.5nm XUUSTM: 2.9 x 10¹⁰ ph/second at source
 - Single harmonic order at 92 eV
 - Source 5 x 10¹² photons/sec/mm²/mrad²; ~ 1 kW/mm²/sr
 - 6% measured efficiency of beamline
- 2x10⁹ ph/s, ~0.3 W cm⁻² illumination on sample
- Near-term advances to yield **10-100x** flux improvement
 - Upgrade to XUUS[™] with KMLabs' commercial specs
 - Improved beamline throughput
 - Increased drive laser power (6W \rightarrow 30 W, same footprint, summer 2017)
 - Further gains by smart laser design

Assumptions for CDI Actinic Mask Review throughput

- Assume XUUS[™] source ~3x current flux
- Resolution 12 nm \rightarrow 40 nm: reduce exposure time
 - 10x shorter exposure : 0.25 sec/position
- 5 x 5 scatter image matrix--> 6 sec exposure per location
- Throughput ~1000 inspected positions per hour
- Increase x20 using known probe (no ptychography scan)
 - More than **10x** faster than current Zeiss AIMS[®]- in first generation!
 - Can be **100x** faster than current Zeiss AIMS[®]- in next generation!
 - More than **1000x** lower cost per image!
 - High harmonic source is not the limit!

Image acquisition speed: limited by imagers

- Image readout is the throughput limitation of current system
 - Currently >4.5 sec readout per acquisition position
 - Need to bring this to ~0.25 sec or faster
- Required speed is routine for visible imager sensors
 - i.e. iPhone 7, 3840 x 2160 @ 30 fps
- **Option 1:** sCMOS sensor (25-50 fps, 2048x2048)
 - In process of evaluating for EUV use
 - Relatively inexpensive, small
- Option 2: FAST CCD (100fps)
 - Developed by LBNL
 - Still expensive (~0.5M) , not "productized"

Image reconstruction throughput

- Use of MEP dramatically decreases time to reconstruction
- Current reconstruction speed: 1 GPU from 8-GPU NVIDIA DGX-1
 - 3 sec per iteration on 11x11 data set
 - Recognizable image after 5 iterations, best fit in ~100 iterations
- Scaling from 11x11 to 5x5:
 - ~3 seconds to recognizable image, ~1 min for high-resolution
- Computation not a serious limitation
 - Process images in parallel on separate GPU cores
 - 1000 high fidelity images per hour requires ~2x DGX-1
- Prior pattern knowledge can also be incorporated
 - Or, compare images in Fourier space, reconstruct only the defect
 - Use known EUV beam, need only 1 scatter pattern -> get x25 boost in speed!

Comparison with Zeiss AIMS®

- Tabletop CDI Mask Review Microscope
 - Provides full characterization of EUV scattering properties of mask
 - Self calibrating, essentially no optical (mis)alignment
 - Allows for higher resolution, detailed amplitude and phase picture of surface/absorber structure
 - Computations can determine how a region will print
 - Small scale provides, for example, potential to integrate with mask repair tool
 - 1000 spots/hour, potential for >20,000/hour
- Zeiss AIMS®
 - Mimics illumination of scanner in detail
 - Image fidelity is a function of optical quality, system alignment
 - Throughput relatively slow at 50 spots/hour

EMC: EUV

© KMLabs Inc. 2017— EUVL Workshop Berkeley. All rights reserved.

oad port and oute and including

EMC: Inner (vacuum

Opportunity to Partner

- Concept, subsystems, demo for EUV mask microscope have *all* been validated
 - Provides powerful capability complimentary to current tools
 - Based on advanced scatterometry familiar to semi industry
 - Fully extensible to higher NA, shorter wavelengths, anamorphic systems, etc.
 - Simple, flexible optical system combined with software
 - Potential for broader application in nondestructive nano-imaging and metrology
- Development to-date was *not* through semi-industry funding
 - Current: DARPA SBIR Phase II program \$1M
 - Other DARPA KMLabs/JILA
 - Indirect: STROBE Science and Technology Center (NSF), Intel Capital, etc.
- But **now** is the time to build, learn to use an EUVL mask tool based on CDI
- Prototype CDI Actinic Mask Review tool cost ~\$2-6M
- Timeline to prototype- 12-18 months

Other EUV XUUS[™] applications

- In situ growth
- Overlay metrology
- Thin film characterization
- Dopant profiling
- Ellipsometry
- EUV optics reflectometer
- Interference litho for resists
- SEM-complement for chemical maps
- Imaging reflectometer

Science 336, 1287 (2012); Science 350, 1225 (2015) Science 297, 376 ('02); Science 348, 530 ('15) PNAS 111, E2361 (2014)

- High harmonic sources are a unique quantum technology allowing exquisite control over EUV and soft X-ray light on a tabletop
- HHG technology is already a useful tool for materials/chemical/nano
 - 1st 13.5 nm sub-wavelength EUV imaging
 - Inspection, dopant profiles, sub-surface imaging, contamination detection
 - Photoelectron & Photovoltage spectroscopies, In-situ materials growth monitor
 - Thin film metrology
- Bright future everything scales with the wavelength
- The limits of HHG technology are not yet known: 10keV, 50keV?

