Reactivity of Metal Oxalate EUV Resists as a Function of the Central Metal

Steven Grzeskowiak,^a Amrit Narasimhan,^a Michael Murphy,^a Lee Napolitano,^b Daniel A. Freedman,^b Robert L. Brainard,^a and Greg Denbeaux^a

> (a) SUNY Polytechnic Institute – Colleges of Nanoscale Science and Engineering 257 Fuller Rd. Albany, NY, USA 12203
> (b) State University of New York at New Paltz, 1 Hawk Drive New Paltz, NY 12561

> > EUVL Workshop June 2017 Berkeley, CA

EUV Lithography

EUV Lithography

- Photons liberate electrons in the resist and possibly cause chemistry to occur in the process
- Further Chemistry due to electron-resist interactions

Resist chemistry can be improved by:

- Increasing the number of photons absorbed
- Efficient reactivity of secondary electrons

References

¹T. Kozawa and S. Tagawa, Jpn. J. Appl.Phys., 49 (3) (2010) 030001. ²A. Narasimhan, S. Grzeskowiak, et al., Proc. SPIE, 9779 (2016) 97790F. ³J. Torok, et al., J. Photopolym. Sci. and Technol., 26 (5) (2013) 625–634. ⁴P. de Schepper, et al., Proc. SPIE, **9425** (2015) 942507. ⁵T. H. Fedynyshyn, et al., *Proc. SPIE*, **5039** (2003) 310.

POLYTEC

Comparison of Metal Centers Previous Work

E_{size} = 70 mJ/cm²

- Number of d electrons = 3
- Oxidation State = (III)
- *Calculated EUV abs. = 5.8 μm⁻¹

$E_{size} = 48 \text{ mJ/cm}^2$

- Number of d electrons = 5
- Oxidation State = (III)
- *Calculated EUV abs. = 6.0 μm⁻¹

Improved Sensitivity

35 nm h/p lines

*Calculated values are based on CXRO absorption using an assumed film density of 1.5 g/cm³

⁷M. Marnell, et al., "*A Molecular Inorganic Approach to EUV Photoresists*", presented at SPIE advanced lithography conference, (February 2014), San Jose, CA.

SUNY POLYTECHI

gdenbeaux@sunypoly.edu

E_{size} = 27 mJ/cm²

- Number of d electrons = 6
- Oxidation State = (III)
- *Calculated EUV abs. = 6.1 μm⁻¹

EUV Atomic Absorption

Atomic Absorption Cross Section per mole

nm 13.5 σ_{α} [cm²/mol] at

EUV Absorption Measurements

gdenbeaux@sunypoly.edu

EUV Absorption Experimental Design

- Measure relative transmission at identical times to avoid pulse to pulse variations.
- Resist thicknesses on the membrane are measured using a J. A. Woollam M-2000 fixed angle ellipsometer equipped with Complete Ease software.

= Si₃N₄ Membrane + Material

Top Down View of Photodiodes

EUV Absorption Measurements

EUV Linear Absorption Coefficients

- Comparing the three metal oxalates (NP1, NP3, and NP4), there is only a small change in EUV absorption.
- Consequently, there must be very different reactivities to account for the change in sensitivity.

 Traditional photoresists have abs. coefficient of typically 5 um⁻¹.

*EUV linear absorption coefficients for NP3 and NP4 are based on the measured value of NP1 and the CXRO database.

8 **SUNY** POLYTECHNIC INSTITUTE

Molecular Organometallic Resists for EUV (MORE): Cobalt Compound (NP1)

Current understanding of photo-mechanism:

Acta Crystallographica, Section E: Structure Reports Online **65** (10) (2009).

- Upon Exposure to EUV light or electrons CO₂ is generated and outgassed from the resist.
- The photoproduct, Co(II)(bpy)(ox), is a coordination polymer that polymerizes through bridging oxalate ligands.
- This bridging occurs when one of the oxalate ligands is eliminated as CO₂

SUNY POLYTECHNIC

Co(II)(bpy)(ox)

E_{size} vs. Metal Center Redox Potential

Literature Values⁸⁻¹²

There appears to be a correlation between the reducibility of the metal and E_{size} .

Hypothesis: There may be a correlation between reducibility of the metal and CO_2 outgassing based upon the photo-mechanism.

gdenbeaux@sunypoly.edu

SUNY POLYTECHNIC 10

Outgassing Spectrum of NP1 (electrons)

gdenbeaux@sunypoly.edu

Relative Intensity (AU)

Outgassing Spectra (electrons)

CO₂ Outgassing Signal NP4: 80 eV Electrons

CO₂ Liberated per Incident Electron: 80 eV

CO₂ Liberated per Incident Electron: 80 eV

CO₂ Outgassing vs. Electron Energy

CO₂ Liberated per Absorbed EUV Photon

CO₂ Outgassing vs. Metal Reducibility

- More easily reduced molecule outgasses more CO₂.
- This could explain the change in E_{size} when varying the central metal.

18

CHNIC

Conclusions

- Between the three photoresists, a small change in EUV absorption does not account for the large change in E_{size}.
- Based upon our understanding of the photo-mechanism increased CO₂ outgassing should improve sensitivity.
- The rate of CO₂ outgassing seems to be correlated to the reducibility of the central metal.

19 **SUNY** POLYTECHNIC INSTITUTE

Acknowledgements

SUNY POLYTECHNIC INSTITUTE

The authors gratefully acknowledge SUNY Polytechnic Institute and the Research foundation for SUNY for financial support of this work.

Special Thanks to:

CNSE (SUNY Polytechnic Institute)

- Jodi Hotalen
- Jake Kaminsky
- Jonathan Chandonait

SUNY New Paltz

 Dr. Daniel A. Freedman and his students for supplying us with the MORE compounds

20 **SUNY** POLYTECHNIC INSTITUTE