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Coherent Imaging in Farfield Regime Coherent Imaging in Nearfield Regime

Gas Discharge Plasma EUV Light Sources

Applications
  • Lithography[7]

• Mask defect inspection[8,9,10]

• Reflectometry[6]

• Scatterometry[5]

• Magneto-optical spectroscopy[4]

• Photoelectron spectro-
   microscopy[13]

• Gas discharge at high voltages (2-3 kV) and 1-10 J p.P.
• Compression and heating lead to multiply 
    ionized atoms (i.e. O5+, Xe10+)
• Gas species, pressure and voltage determine
    emission spectrum and EUV output power
 
 

Features
 • Emission of soft X-rays and EUV radiation 
    (2 nm - 50 nm)
• High Power: 40 W/(2πsr) (@13.5 nm, 2% BW)
• Radiance from different emission lines:
    100 W/(mm2 sr)   (@10.9 nm, Xe/Ar, 4% BW)  
    8 W/(mm2 sr)       (@13.5 nm, Xe, 3.2% BW)
    0.4 W/(mm2 sr)    (@17.3 nm, O2, <0.1 % BW)
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Drawing of the defect array 
with labeld dot sizes.

 

Coherent Imaging with Extreme Ultraviolet Light
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Outlook: Actinic Inspection of Defects in 
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Farfield Advantages
✔ Highest achievable resolution 
✔ Robust against vibrations

Farfield Disadvantages
✘ Highest requirement on coherence
✘ Small Field of View

CDI           vs.       Ptychography
 ✔ "Single" image re-

      construction 
✔ Highest resolution
 
 
✘ Fragile reconstruction
✘ Finit sample size

✔ "Infinite" sample size
✔ Robust reconstruction
✔ Reconstruction of 
     experimental conditions
 
✘ Multiple images required
✘ Higher complexity

Schematic of a Ptychography Setup

• Coherent diffraction imaging utilizes coherent light for lens-less imaging
• The intensity of the diffraction pattern of the object is recorded
• Iterative phase retrieval algorithm reconstructs phase
    and amplitude of the wavefront behind the object[3]

• Spatially resolved information about refractive index, 
    material and thickness can be extracted
• Resolution does not directly depend on optics quality
• Ptychography (Scanning CDI) collects multiple patterns
    with overlapping illumination

• Imaging (@17.3 nm) of a pattern in an Au/ Si3N4 membrane 
• Reconstruction with a modified Hybrid-Input-Output 
    algorithm and a modified modulus constraint[17,18]

• Three different Si3N4 thicknesses are distinguishable
• Resolution estimated to be 108 nm by PRTF [10] and 123 nm by knife-edge  
• Inhomogenoues milling of FIB visible in the fan of the structure  

• Nearfield regime F ~ 1 relaxes the require-
    ment for high dynamic range imaging
• Fresnel scaling allows increased sample-
    detector distance
• Diffuser scatters light back to detector, 
    which would not have reached it 
    elsewise [15]

 

Experiment
• Strong curvature R=100 mm of an EUV-
    Schwarzschild objective gives access to 
    the nearfield regime by Fresnel scaling
• Reconstruction of illumination wavefront 
    even without visible diffraction speckles in
    the diffraction pattern
• By switching to a 70 nm pinhole a resolution
    of about 70 nm can be expected

• Particles/ defects on mask blanks
    are one of the major challenge in
    EUV lithography/ imaging
• Development of deposition 
    technique to cover these defects
• Fabrication of programmed defects 
    arrays with different defect sizes 
• Inspection of defects by non actinic methods 
    (AFM, SEM,..) is limited in validity
• EUV light can penetrate the multilayers to 
   probe the influence of the defects 
 

 
 

Project Partner: Founding:

 

Top: Typical procedure for CDI reconstruction. Different 
constraints are applied to recover the wavefront at 
sample plane. 
 
Right: The schematic shows how the 
algorithm slowly converges to a - in this case - optimal 
 and unique solution.

 

 

Top: Typical emission spectra for 
 different gases. The resolution is mostly
 limited by the instrument function.
Middle: Schematic of a hollow-cathode 
 triggered source based on [14]. The 
 electrode material is molybdenium. 
Left: Photography of a EUV source with its
 control electronics and cooling. 

 

 

• Simple setup
• High dynamic range recording required, to detect high 
    spatial frequency signals at the edge of the detector
 

Nearfield Advantages
✔ Adjustable Field of View
✔ Imaging of weak scatterer
✔ Reduced requirements on coherence

Nearfield Disadvantages
✘ More complex setup
✘ Strongly depending on pinhole size 
     and distances

Farfield Ptychography with an Industrial 
Tin Plasma Source
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• Industrial EUV metrology source
• Up to 300 W/(2πsr) and 145 W/(sr mm2) (2% BW)

Acknowledgment to:
Figure a)  Reconstructed image. Figure b) 
shows a zoomed version, with a significant 
phase shift visible. c) shows the illumination
wavefront on the sample, d) shows the
backprojection to the pinhole position. 

In blue the emission spectrum of the tin di-
scharge source with a strong UTA at 
13.5 nm. The orange line shows the light 
after passing the spectral filter.

Experiment
• 200 scanning positions ea 30 s exposure
• 400 nm polyspheres show strong phase contrast
• Thickness determination in principle possible, but
    limited by resolution
• 100 nm resolution for ~ 50 µm FoV
• Application for pellicle inspection
• Further information in [19]

Left: Shows a nearfield diffraction pattern by a ~ 1 µm 
pinhole with visible fringes in one direction. 
Coherence in the other direction was surpressed by another
close-by pinhole.
Right: Reconstructed image of a nearfield pattern with a 
~ 5 µm pinhole. Reconstruction artefacts due to bending of 
the sample and incoherence of the source. 
Inset: Reconstructed illumination wavefront.
 

Experiment
• Fully coherent illumination of a 8 cm aspherical mirror to
    create a coherent spot of 10 - 50 µm on the multilayer 
    sample
• Dual mirror setup allows flexible adjustment 
    of bandwidth of 2% and smaller with a peak 
    reflectivity of 13% (@13.5 nm)
• 1 µm pinhole at source image position allows adjustment 
    of spatial coherence 
 
 

~70nm Pinhole Diffuser
Sample

Schwarzschild Objective

EUV 
Source

Zirconium Filter
EUV 

Camera

Imaging setup with a Schwarzschild system to 
demagnify the source onto a pinhole. Sample and pinhole
separation is about 100 µm.

Imaging setup with a ML mirror and
 aperture for beam shaping. Sample
 and camera are separted by 4 cm. 

 

TEM Micrographs of a 500 nm diameter defect 
buried below 144 ML of Si/Mo (left) and an 
additional 2 µm Si smoothing layer (right).

a) c)
b)

d)

Top: a) Shows a SEM image of FIB-milled structure with different 
milling depths. Overall diameter is 9 µm. b) shows the diffraction 
pattern on the detector. c) The reconstructed objetc with the 
color-coded phase and amplitude.

Right: a) Shows the recon-
 struction of a holey SiN-grid
at 17.3 nm. b) Shows the 
reconstruction using the ext-.
tracted 18.5 nm illumination
from the same data set.
c) shows the calcualted
thickness map. d) is a SEM
image of the grid. 
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