Soft X-ray Tomography (SXT)

Carolyn Larabell

University of California San Francisco Lawrence Berkeley National Lab

National Center for X-ray Tomography Supported by NIH-NIGMS and DOE-BER

Soft X-ray Tomography (SXT)

- Imaging whole, hydrated cells in the native state
- No fixatives, no stains
- Cryo-immobilized
- 50 nm isotropic resolution (not limit; source is 2.4 nm)
- See molecules using correlated fluorescence and xray tomography

Contrast: Imaging in the 'water window'

Between K shell absorption edges of C (284 eV) & O₂ (543 eV)

 $\lambda = 2.4 \text{ nm}$

Contrast: Imaging in the 'water window'

Absorption is linear with thickness & concentration

Hanssen et al (2012). *J. Struct. Biol.* 177, 224-232

Contrast: Imaging in the 'water window'

Absorption is linear with thickness & concentration

- Whole, hydrated cells in near-native state (cryo-immobilized)
- Natural, quantitative contrast; absorption of x-rays linear.

Segmenting structures

Le Gros et al. (2016) Cell Reports. 17(8), 2125-2136

Segmenting structures

Plot histogram of all voxels

Segmenting structures

Le Gros et al. (2016) Cell Reports. 17(8), 2125-2136

Isotropic resolution

Full rotation vs. limited tilt

Cinquin et al. (2014). J Cellular Biochemistry. 115:2009-216

Full rotation vs. limited tilt

Cinquin et al. (2014). J Cellular Biochemistry. 115:2009-216

Phenotypic consequences of knocking out a gene

Structural organization of S. cerevisiae

Uchida et al. (2011) Yeast. 28, 227-236

Quantitative analysis of S. cerevisiae

Cell volume

s

s

G2

G2

Μ

M

160 140

120

100

80

60 40

20

0

100

80

60

40

20

0

G1

G1

Range of Cell Vol. (µm³)

Average Cytosol Vol. (µm³)

9.00 Average Organelle Volume (µm³) In Haptoid Cells 6.00 3.000.00 G1 5 G2 м Average Organelle Volume (µm³) In Diploid Cells 9.00 6.00 3.00 0.00

s

G2

М

Organelle surface area

Uchida et al. (2011) Yeast. 28, 227-236

G1

HU multimerization shift controls nucleoid compaction

HU - histone like protein

Hammel et al., (2016) Science Advances. doi: 10.1126/sciadv.1600650.

Testing drugs for sickle cell disease

Wah Chiu Michele Darrow Baylor College of Medicine

Yang Xia University of Texas Health Science Center

Darrow et al. (2016) J. Cell Science. 129, 3511-3517

Testing efficacy of drugs to reverse sickling

Darrow et al. (2016) J. Cell Science. 129, 3511-3517

Malaria-infected red blood cells

Leann Tilley Eric Hanssen

University of Melbourne Australia

Malaria-infected RBC

Hanssen et al. (2012) J. Structural Biol. 177, 224-232

Asexual stage

Photosynethisis, Bioenergy

Krishna Niyogi

University of California Berkeley & HHMI

Chromochloris zofingiensis

Single cell

16 cells

Roth et al., PNAS, in revision.

Role of nuclear organization in gene expression

Chromatin condensation during neurogenesis

Stavros Lomvardas Columbia University

Mark Le Gros & Carolyn Larabell University of California San Francisco

Neurogenesis: from stem cell to neuron

- About 1200 Olfactory Receptor (OR) genes found in 18 mouse chromosomes
- Each neuron transcribes one out of ~2400 OR alleles
- Allele selection occurs during neurogenesis

Le Gros et al. (2016) Cell Reports. 17(8), 2125-2136

Clowney et al. Cell. 151, 724-737

From stem cell to neuron

Le Gros et al. (2016) Cell Reports. 17(8), 2125-2136

HeterochromatinEuchromatin

Nuclear structure and gene selection

FISH

Silenced genes

Clowney et al. Cell. 151, 724-737

Chromatin networks

Le Gros et al. (2016) Cell Reports. 17(8), 2125-2136.

3D organization of the nucleus critical for normal differentiation

Nuclear structure and gene selection

FISH

Silenced genes

LBR expressing cell

Wild type cell

OR expression disrupted

Clowney et al. (2012) Cell. 151, 724-737

Nuclear structure and gene selection

Le Gros et al. (2016) Cell Reports. 17(8), 2125-2136

Nuclear organization

From stem cell to blood cell

During differentiation:

Percent heterochromatin increases

Ugarte et al. (2015) Stem Cell Reports. 5(5), 728-470

From stem cell to blood cell

During differentiation:

Nuclear volume decreases and peripheral heterochromatin thickens

Ugarte et al. (2015) Stem Cell Reports. 5(5), 728-470

Peripheral heterochromatin

- Increases during differentiation
- Decreased in transformed and tumor cells

Hematopoiesis

Distance from NE (µm)

Nuclear volume

Proportional to volume of euchromatin region

Neurogenesis

Nuclear volume (µm³)

Le Gros et al. (2016) Cell Reports. 17(8), 2125-2136

Hematopoiesis

Nuclear volume (µm³)

Ugarte et al. (2015) Stem Cell Reports. 5(5), 728-470

Topology of the human genome

3D structural models of the human genome at 4Mb resolution

Tjong et al. (2016) PNAS. Mar 22; 113 E1663-1672

Correlated fluorescence and

x-ray tomography

Fluorescence, super-resolution, etc.

Cryo confocal tomography

Le Gros et al. (2009) J. Microscopy. 235(1), 1-8

Inactive X chromosome

Smith et al. (2014) Biophysical Journal. 107(8), 1988-96

Correlated fluorescence and x-ray tomography

Inactive X chromosome

Fluorescence

Overlay

Correlated cryo fluorescence & x-ray tomography

Smith et al. (2014) Biophysical J. 107, 1988-96

Inactive X chromosome

Fluorescence

X-ray

National Center for X-ray Tomography

Mark Le Gros Gerry McDermott Jian-Hua Chen Axel Ekmann Venera Weinhardt Rosanne Boudreau Chao Yang Jeff Gamsby Tia Plautz Andreas Walter Elizabeth Smith

Collaborators

Stavros Lomvardas & Josie Clowney, UCSF, Columbia Barbara Panning & Karen Leung, UCSF Camilla Forsberg & Fernando Ugarte, UCSC Frank Alber, Univ Southern California Markko Myllys, & Jussi Timonen, U. Jyväskylä Wah Chiu, Baylor College of Medicine Michal Hammel, LBNL John Tainer, MD Anderson Cancer Center Leann Tilley, Eric Hanssen, Univ Melbourne Krishna Niyogi, UC Berkeley

National Center for X-ray Tomography <u>http://ncxt.lbl.gov</u>

Supported by:

NIH-NIGMS DOE-Biological & Environmental Research NIH Epigenomics Roadmap Grant NIH 4D Nucleome Project NIH-NIDA Gordon and Betty Moore Foundation