CANONICAL PHASE MEASUREMENT IN QUANTUM MECHANICS

Irfan Siddiqi

Lawrence Berkeley National Laboratory & Physics Department University of California, Berkeley

EUV Workshop Keynote 06-12-2019

REVOLUTIONS IN QUANTUM THEORY

THE QUANTUM INFORMATION PARADIGM SHIFT

(Z370: www.pcworld.com)

• Start with a good switch...

- Advanced materials science, electromagnetism, and thermodynamics at the nm scale
- Different functional units (processor, memory,..)
- Highly developed instruction sets
- Qubits: Write 0 and 1, Read 0 or 1
- N quantum bits *entangle* to form 2^N states ! (compare to 2N for classical bits)

QUANTUM IS FUNDAMENTALLY DIFFERENT AT ALL LEVELS!

THE QUANTUM WORLD AROUND US

A MRI Scan Relies on Quantum Mechanics!

Water molecules have two hydrogens which have nuclear spin (up or down)

QUANTUM SYSTEMS CAN EXIST IN MANY DIFFERENT CONFIGURATIONS, EVEN IF WE CAN'T OBSERVE ALL OF THEM!

THE POWER OF ENTANGLEMENT

- Let's build a computer one spin (quantum bit) at a time !
- Unlike MRI which measures <u>average</u> properties of a group of spins, we need to address each spin individually

- Measurement reveals state to be
- If we don't observe, state is (a · + b ·) and described by 2 numbers {a,b}
- Adjacent bit is (c · + d ·) and described by 2 numbers {c,d}
- Couple these two bits and consider product: (a · + b ·) X (c · + d ·)

cannot describe

If a = 0, lose **ac** · **11** <u>If d =</u> 0, lose **bd** · **1**

2^N >> 2N: NEED MORE NUMBERS THAN PARTICLES IN THE UNIVERSE TO DESCRIBE ~ 300 ENTANGLED QUBITS

Dopants in Silicon / Diamond www.sciencedaily.com

Trapped Ions

www.quantumoptics.at

PHYSICAL IMPLEMENTATIONS

	Leading technologies in NISQ era ¹		Candidate technologies beyond NISQ		
Qubit type or technology	Superconducting ²	Trapped ion	Photonic	Silicon-based ³ T	⁻ opological [®]
Description of qubit encoding	Two-level system of a superconducting circuit	Electron spin direction of ionized atoms in vacuum	Occupation of a waveguide pair of single photons	Nuclear or electron spin or charge of doped P atoms in Si	Majorana particles in a nanowire
Physical qubits ^{4,5}	IBM: 20, Rigetti: 19, Alibaba: 11, Google: 9	Lab environment: AQTº: 20, lonQ: 14	6×3 ⁹	2	target: 1 in 2018
Qubit lifetime	~50–100 µs	~50 s	~150 µs	~1–10 s	
Gate fidelity ⁷	~99.4%	- ~99.9%	~98%	~90%	target ~99.9999%
Gate operation time	~10–50 ns	~3-50 μs	~1 ns	~1–10 ns	
Connectivity	Nearest neighbors	All-to-all	To be demonstrated		
Scalability	No major road- blocks near-term	Scaling beyond one trap (>50 qb)	Single photon sources and detection	Novel technology potentially high scalability	?
Maturity or technology readiness level		TRL 4	TRL 3	TRL 3	TRL 1
Key properties	Cryogenic operation Fast gating Silicon technology	Improves with cryogenic temperatures Long qubit lifetime Vacuum operation	Room temperature Fast gating Modular design	Cryogenic operation Fast gating Atomic-scale size	Estimated: Long lifetime High fidelities

Topological Wires www.microsoft.com Sources: BCG analysis; expert interviews.

¹Noisy Intermediate-Scale Quantum devices era.

²Currently only technology with external cloud access; several forms (charge, flux, phase) of qubits exist but most pursue a less noise-sensitive charge-based qubit (transmon).

³Additional approaches include Si and SiGe quantum dots.

Superconducting Circuits

Photonic Circuits

www.qnl.berkeley.edu

QUANTUM COMPUTING: FROM ART TO ARCHITECTURE

MAKING AN ELECTRICAL CIRCUIT OUANTUM

ACCESSING THE QUANTUM WORLD

- Combination of *R*, *L*, *C* (linear or nonlinear)
- Excite with voltages / currents (AC or DC)
- Classically, these quantitates can take on any continuous values

QUANTUM MECHANICS SAYS THESE QUANTITIES ARE FUNADEMENTALLY DISCRETE!

A QUBIT IS JUST A NONLINEAR OSCILLATOR

- Classical harmonic oscillator: all energies (currents) are allowed
- Quantum harmonic oscillator: only certain energies (currents) are allowed
 - Tunnel junction \rightarrow Nonlinear, isolate 0, 1

AI/AIOx/AI Josephson tunnel junctions

OTHER WAYS TO RELAX QUANTUM SUPERPOSITION...

Coupling Losses R ~ 50 Ω

MEASURING OUBIT STATES: MICROWAVE REFLECTOMETRY

WAFER SCALE PRODUCTION OF SC DEVICES

OUBITS AND THEIR MANY FACETS

Qubit	f _{qubit} (GHz)	Τ ₁ (μs)	Τ ₂ (μs)	Τ ₂ * (μs)
1	5.231	57	91	58
2	5.382	57	66	34
3	5.096	42	54	33
4	5.326	63	74	47
5	5.184	58	95	53
6	5.308	63	112	37
7	5.343	56	96	50
8	5.221	69	98	57
	Average	58	86	46

• Planar devices have many surfaces/interfaces that can host defects

 Rapid non-destructive hydro-metrology!

NEED LOCAL, 3D DEFECT MAPS (CHEMICAL/STRUCTURAL) & MODELING

8 OUBIT CHIP UNIFORMITY REQUIREMENTS

 Two-qubit gate (cross resonance gate) places strict requirements on detuning of neighboring qubits relative to anharmonicity (α).

Based in part on work by IBM: J. Hertzberg et al. "Frequency precision in fixed-frequency transmon qubits, and implications for scalable fault-tolerant quantum computing circuits." http://meetings.aps.org/Meeting/MAR18/Session/A33.3

- Target qubit frequency distributions (colored lines) optimized for maximum yield with Monte-Carlo simulations.
- For $\sigma = 50 \text{ MHz}$

(2% critical current variation) Predicted yield is 10%.

CO-DESIGN OF MATERIALS / ARCHITECTURE / ALGORITHMS

Forbidden frequency regions for nearest neighbors (red) and next nearest neighbors (orange)

THE TYRANNY OF WIRES

Need to reduce wire count !

•

.

75

75

75

100

6 Frequency (GHz)

100

6 Frequency (GHz

100

- Need to reduce • wire complexity
 - Quantum data transmission & conversion
 - optical
 - acoustic
 - classical analog
 - classical digital
 - **Cryogenic data** processing?

TRUE MEASUREMENTS OF PHASE

ADAPTIVE PHASE MEASUREMENT

EXPERIMENTAL SETUP – ADAPTIVE DETECTION

PHASE ESTIMATION: RECEIVER PERFORMANCE

EXPERIMENTAL ADAPTIVEDYNE BACK-ACTION

ADVANCED QUANTUM TESTBED

- Full, open access to all levels of the stack
- Modular structure to benchmark different technologies
- AQT scientists partner with community users to run algorithms
- Broad science mandate
- Complementary to focused industry efforts

KEY QUESTIONS FOR THE NEXT 5 - 10 YEARS

How do we stabilize quantum coherence in an open many-body quantum system? What does physics look like at the edge of the complexity frontier?

How can we efficiently sample the information in a many-body quantum system?

Can we conceive of machines to treat data fully quantum mechanically?

How do we parameterize, verify, and validate the information capacity of a complex quantum system in a "universal" way ?

What is the role of entanglement in different flavors of quantum computations?

How do we express quantum advantage? How fundamental are the classical resources needed to stabilize quantum mechanics at the many particle scale?