

Exploration of compact and rigorous simulation-based methods to reduce stochastic failure risk

Kevin Lucas, Ulrich Klostermann, Wolfgang Demmerle, Ulrich Welling, Hery Susanto

Outline of this talk

- Review current continuous simulation methods
- Review current stochastic rigorous simulation methods
- Assumptions for stochastic compact failure simulations
- Continuous process window vs. stochastic process window error budgeting
- Examples of compact stochastic model flows for reducing stochastic failure risk

All rigorous simulations are done with Synopsys Sentaurus Lithography (S-Litho™) All compact simulations are done with Synopsys ProGen[™]

' synopsys*

Continuous simulation to reduce lithography failure risk

Most continuous simulation is ultimately to reduce failure risk -> hotspots, CD/EPE control

Continuous simulation covers (some) stochastic litho failures

AF printing is an example of easy to observe stochastic litho failure behavior in DUV

Examples: Rigorous Stochastic Litho Simulation

- mask assessment
- litho process assessment
- manufacturing integration

Stochastic EUV image CD distribution comparisons

W. Gao et. al. SPIE Vol. 10583, 2018

LCDU NA0.55 SP < LCDU NA0.33 DP

with high-k mask absorber

synopsys*

K. Lucas, et. al. EUV Workshop June 12, 2019

Stochastic failure rate analysis to assess litho options

E.g., Mask Bias Optimization To Minimize Defect Probability

K. Lucas, et. al. EUV Workshop June 12, 2019

Synopsys[®]

Stochastic failure rate sensitivity analysis of resist properties

Defect Probability Reduction By Resist Parameters Tuning

synopsys*

Impact of Mask LWR on Wafer LWR

Example given for Pitch 36nm

Experiment Name=P36V18, a=0, b=0 Mean = 16.05182, Standard Deviation = 0.50015, Standard Error = 0.06204, Range = 1.73363

Mask LER extracted from SEM image of mask

Mask LWR ~ 1.5 nm

Stochastic modeling for EUV CAR LWR estimation

Simulation of species (PAG, Acid, Base) concentrations at interfaces and inside bulk film

Continuous Model

Profile shape

Dose2Size

Stochastic Model additional:

- LER, LCDU
- Defectivity

A stochastic model needs many results to provide useful statistics. Here: Contour band overlay

synopsys^{*}

•

Contact Hole CD vs Defect Size (vote taking lithography)

Stochastic simulations assuming perfect overlay

SYNOPSYS

K. Lucas, et. al. EUV Workshop June 12, 2019

Modeling Metal-Oxide Nanoparticle stochastic resists

Stochastic simulation for photo-bridging of spin coated resist films

Stochastic vs. Continuous Process Window (PW)

Assumptions for compact stochastic model usage:

- 1. Will be used for large area analysis and mask synthesis -> fast
- 2. Will use models at discreet PW conditions
- 3. Will not be used for Monte-Carlo analysis on large areas

Continuous Model Process Window – 2 main error areas

- Dose errors (signal intensity, process response to signal)
 - ~Dose effects: dose, apodization, polarization, flare, source map, mask CD, mask reflectance, resist photospeed, resist/ARC/underlayer thickness, bake temp, developer sensitivity, etch, implant, CD metrology
 - Systematic: X-mask, X-slit, X-scan, X-source, X-wafer, X-lot, tool-tool, modulemodule, total # EUV pulses, resist batch-batch, pattern pitch/density...
 - Stochastic: X-mask, X-scan, X-wafer, field-field, wafer-wafer, lot-lot, day-day, CD measurement...
- Focus errors (phase, path length offsets) in spatial light orders
 - ~Focus effects: aberrations, focus offset, resist/ARC/underlayer thickness, mask phase, mask sidewall-angle...
 - Systematic: X-mask, X-slit, X-scan, X-source, X-wafer, X-lot, tool-tool, modulemodule, total # EUV pulses, pattern pitch...
 - Stochastic: X-mask, X-scan, X-wafer, field-field, wafer-wafer, lot-lot, day-day...
- Determine PW budget for dose and focus independently
 - Linearly combine systematic errors, sum of squares for stochastic errors
 - Define +/- max focus & dose deviations from nominal = PW limits for simulation

Synopsys[®]

K. Lucas, et. al. EUV Workshop June 12, 2019

Compact stochastic simulation PW definition

- Traditional 'continuous' PW is only dose & focus space.
 - CD, EPE, PV-band or pinch/bridge simulated at discrete dose & focus sampling points along 2D PW space boundary
 - If no failures seen, PW is 'good'
 - If any failures seen, PW is 'bad' -> call hot-spot fix recipe
 - Hot-spot fix uses continuous PW simulations to analyze & repair pattern
- **Q:** How to extend methodology to EUV stochastic variations?
- A: Need to add new parameters for key stochastic EUV effects
 - Dose, focus and key parameters which best explain stochastic failures in EUV resist (e.g., ILS, acid concentration, base diffusion)
 - Rigorous stochastic simulation guides choice of parameters & limits
- A discrete set of models can still represent the boundaries of the fab's expected EUV stochastic N-dimensional PW space
 - If no failures seen, PW is 'good'
 - If any failures seen, PW is 'bad' -> call hot-spot fix recipe
 - Hot-spot fix uses stochastic PW simulations to analyze & repair pattern

e with stochastic parameter(s)

Synopsys*

K. Lucas, et. al. EUV Workshop June 12, 2019

Stochastic Compact PW Model Examples

Initial industry approach – using Image-Log Slope (ILS) to approximate stochastic failure sensitivity in EUV OPC verification

K. Lucas, et. al. EUV Workshop June 12, 2019

Stochastic ILS model: LineEnd to Pad bridging risk detection

Stochastic ILS model: Pad to Pad bridging risk detection

Synopsys[®]

18

Stochastic ILS model: Non-perpendicular bridge detection

Continuous Model Worst CD	ILS Tail	ILS Head	Stochastic model Worst CD	Stochastic model CD offset
17.2nm	0.021 1/nm	0.031 1/nm	11.2nm	-6.0nm

Synopsys°

Improved Compact Stochastic PW Model Examples

Using PW model with optical and resist stochastic parameters to more accurately detect stochastic failure sensitivity in EUV OPC verification

Example: Stochastic Optics + Resist model

- for sensitive pattern pinching risk detection and repair

<mark>Yellow</mark> Red = Continuous PW model worst contour= Stochastic (Optics + Resist) model worst contour

synopsys[®]

K. Lucas, et. al. EUV Workshop June 12, 2019

Example #2: Stochastic Optics + Resist model

- for sensitive pattern pinching risk detection and repair

synopsys[.]

Summary & Conclusions

- Reviewed a broad range of current continuous & stochastic simulation methods
- Compared continuous vs. stochastic process window (PW) error inputs
- Discussed a straight-forward extension of current PW budget methodologies to EUV compact stochastic PW modeling
 - With help from rigorous stochastic simulation analysis
- Provided examples of simulation flows for reducing stochastic failure risk by PW compact modeling analysis and mask synthesis
 - Standard ILS-based CD EUV failure risk increase
 - More accurate Optics + Resist stochastic EUV PW contour failure analysis
- <u>Acknowledgements:</u>
 - Aram Kazarian, Weimin Gao

synopsys[.]