# Thermo-mechanical characteristics of EUV pellicle with particle contamination



## HANYANG UNIVERSITY

Ha Neul Kim<sup>1</sup>, Yong Ju Jang<sup>2</sup>, Seong Ju Wi<sup>1</sup>, and Jinho Ahn<sup>1, 2\*</sup>

<sup>1</sup>Division of Materials Science and Engineering, <sup>2</sup>Division of Nanoscale Semiconductor Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea

# INTRODUCTION

# Durability and reliability of EUV pellicle for EUVL HVM application

- Since cooling mechanism through heat conduction and convection is extremely limited, thermal properties of EUV pellicle has been a main issue with regard to a durability and reliability
- Localized heating of EUV pellicle w/ a microparticle can be occurred due to near-unity absorbance of the microparticle
- EUV pellicle should not be destroyed even after exposure to the contaminant, but there has been no report on the durability and reliability of the pellicle after contamination

|                   | Item                                | Requirement       | NXE3300      | NXE3350      |
|-------------------|-------------------------------------|-------------------|--------------|--------------|
|                   | EUV transmittance                   | ≥ 88% single pass | TTALESSOO    |              |
|                   | EUV transmittance<br>non-uniformity | ≤ 0.4% half-range | Others (20%) | Others (12%) |
| Pellicle material | EUV reflectance                     | ≤ 0.04%           | Mo (4%)      | AI (6.5%)    |
| requirements      |                                     |                   | Ti (7%)      |              |

# **RESULTS & DISCUSSION – Finite element method simulation**

## Simulation condition

• Material properties of pellicle and particle species

| Parameter        | Density<br>(kg/m³) | Specific heat<br>(J/kg⋅K) | Thermal<br>conductivity<br>(W/m⋅K) | Emissivity |
|------------------|--------------------|---------------------------|------------------------------------|------------|
| SiN <sub>x</sub> | 3170               | 673                       | 2.5                                | 0.0035     |
| Ru               | 12500              | 238                       | 11.7                               | 0.4        |
| Ті               | 4510               | 544                       | 21.9                               | 0.70       |
| Fe               | 7874               | 450                       | 80.4                               | 0.70       |
| С                | 2267               | 734                       | 96.0                               | 0.95       |

• Heat transfer simulation for the pellicle composite w/ single microparticle was performed based on





- SiN, based pellicle composite was selected to evaluate effect of particle adders on pellicle during heat load test
- Particles were dispersed in IPA, and transferred to the EUV pellicle surface through spin coating
- 3 types of particles that mainly appear during EUV scanner system were used for contamination
  - > Carbon, Ti, and Fe sphere particles (Average diameter ~ 10  $\mu$ m)

## heat load by EUV source power

#### <Temperature distribution depending on particle species>





#### <Temperature distribution depending on particle size>

#### <Peak temperature of Fe particle w/ 30µm size>

- Heating/cooling rate was determined by heat capacity of the particle density, specific heat, particle size
- Thermal durability of EUV pellicle with larger particle could be deteriorated due to additional thermal stress by temperature gradient between the pellicle and particles during heating/cooling process
- Peak temperature of particles depending on cycle number remained constant

## **RESULTS & DISCUSSION – Heat load test results**

## Pellicle contamination



## **Deposition of Ru as thermal emission layer**



Verifying thickness and composition of Ru layer by TEM and EDAX >

- Ru layer was deposited by DC/RF magnetron sputter under 100 W power, <10<sup>-6</sup> torr vacuum condition
- Thickness and composition of Ru layer were investigated by TEM and EDAX
  - $\succ$  Continuous thin film was formed when Ru thickness  $\geq$  4 nm

## Evaluating properties of contaminated EUV pellicle



#### <Optical microscopy result of contaminated pellicle >

- The distribution of adders was observed by optical microscopy and occupied area of particle was investigated as 1.8% (C), 5.7% (Fe), 5.69% (Ti), respectively.
- In terms of adder size, C and Fe are similar size to 35 microns or less, but Ti was more aggregated so that particles having a maximum diameter of 65 microns were formed

#### Heat load test results depending on particle species



#### <Heat load test results of contaminated pellicle depending on (right) cycle number (left) and absorbed heat load>

<Overview and schematic of heat load test equipment with 355 nm UV laser>

| $P_{UV}$                                               | Parameter            | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|--------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\overline{D_{UV}} * A_{UV} = I_{abs}$                 | Beam diameter        | 0.6 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| I : absorbed heat load @ pellicle [W/cm <sup>2</sup> ] | Heating/cooling time | 0.1/0.9 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| A : absorbance of pellicle membrane                    | Vacuum               | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> |  |

#### <Heat load test condition>

• Heat load of pellicle in EUV scanner can be emulated by UV laser considering absorbance of membrane,

high vacuum chamber and rotating slit

• Thermo-mechanical characteristics of pellicle were evaluated by heat load test equipment with 1:9 on/off ratio using 355 nm UV laser

- Since the total heat capacity of the contaminated pellicle is small at the same area, temperature of the contaminated pellicles was measured lower
- Fe contaminated pellicle was destroyed at 2363 cycles, and the other pellicles were alive over 10,000 cycles at absorbed heat load of 1 W/cm<sup>2</sup>

> Fe particles have the worst effect on the thermo-mechanical properties of the pellicle considering

temperature gradient at the simulation results

# CONCLUSION

- Temperature gradient between the pellicle and particle adder during exposure process was determined
- by heat capacity of the particle adder
- Thermo-mechanical property of contaminated pellicles depending on particle species was confirmed
  - > The thermal durability of pellicle was deteriorated by Fe particle adders
- Thermal stress analysis due to temperature gradient between the pellicle and the particle adder will be further performed

# 2019 EUV Workshop