OVERVIEW STATUS AND PERFORMANCE OF THE 0.5-NA EUV MET AT BERKELEY LAB

BERKELEY LAB ARNAUD ALLEZY, <u>CHRIS ANDERSON</u>, WEILUN CHAO, CARL CORK, WILL CORK, RENE DELANO, JASON DEPONTE, MICHAEL DICKINSON, GEOFF GAINES, JEFF GAMSBY, ERIC GULLIKSON, GIDEON JONES, RYAN MIYAKAWA, PATRICK NAULLEAU, SENO REKAWA, FARHAD SALMASSI, BRANDON VOLLMER, DANIEL ZEHM, WENHUA ZHU

INPRIA ANDREW GRENVILLE, STEPHEN MEYERS

0.3 NA MET

14,078 MATERIALS TESTED

2008 22 nm HP CAR

2008 22 nm HP CAR

2011 14 nm HP CAR

2015 **13 nm HP**

NA

0.5

NA

RESOLUTION

0.5

8 nm

MET5	
ΝΑ	0.5
RESOLUTION	8 nm
SOURCE	Synchrotron
PRODUCTIVIT	Y 1 WPH 9 x 9 FEM up to 200 mJ/cm2

MET5	
ΝΑ	0.5
RESOLUTION	8 nm
SOURCE	Synchrotron
PRODUCTIVITY נ	1 WPH 9 x 9 FEM up to 200 mJ/cm2
FIELD SIZE	200 um (x) 30 um (y)

MET5	
NA	0.5
RESOLUTION	8 nm
SOURCE	Synchrotron
PRODUCTIVIT	Y 1 WPH 9 x 9 FEM up to 200 mJ/cm2
FIELD SIZE	200 um (x) 30 um (y)
WAFER SIZE	200 mm

MET5	
ΝΑ	0.5
RESOLUTION	8 nm
SOURCE	Synchrotron
PRODUCTIVITY up	1 WPH 9 x 9 FEM to 200 mJ/cm2
FIELD SIZE	200 um (x) 30 um (y)
WAFER SIZE	200 mm
PROCESSING	Robotic tailored for research

0.5-NA PRINTING RESULTS RESOLUTION

REFLECTIVITY OF MULTILAYER @6°

THICKNESS OF ABSORBER 622 nm

REFLECTIVITY OF ABSORBER @6° 1.5%

Modeled contrast of vertical lines in MET5 with annular 35-55 illumination.

Annular 35-55

Modeled contrast of vertical lines in MET5 with annular 35-55 illumination.

Below the line won't print. Contrast too low.

Vertical lines in MET5 with annular 35-55 illumination. Numbers are half-pitch.

Wafer ID: 2018-12-05-002 Dose: 48 mJ/cm2 FT: 20 nm

Modeled contrast of frequency doubled horizontal lines in MET5 with annular 10-20 illumination.

Below the line won't print. Contrast too low.

Frequency doubled horizontal lines in MET5 with annular 10-20 illumination. Numbers are half-pitch.

Wafer ID: 2018-12-05-002 Dose: 96 mJ/cm2 FT: 20 nm

8 nm HP

Annular 10-20 (F2X)

 \bigcirc

Wafer ID: 2018-12-05-002 Dose: 47 mJ/cm2 FT: 20 nm

0.5-NA PRINTING RESULTS ASTIGMATISM

Wafer ID: 2018-11-02-02 Dose: 23 mJ/cm2 FT: 20 nm

Annular 35-55

Wafer ID: 2018-11-02-02 Dose: 23 mJ/cm2 FT: 20 nm

Annular 35-55

0.5-NA PRINTING RESULTS FOCUS CONTROL

mJ/cm²

mJ/cm²

Bossung Curves for 14 nm 1:1 vertical lines (nominal) in MET5 with annular 40-80 illumination.

Bossung Curves for 15 nm 1:1 vertical lines (nominal) in MET5 with annular 40-80 illumination.

0.5-NA PRINTING RESULTS DOSE UNIFORMITY

Measured CD of 16 nm 1:1 lines

MEAN = 15.9 nm $\sigma = 0.7 \text{ nm}$

DOSE CONTROL

Hamamatsu GaAsP Photodiode 2.3 mm x 2.3 mm

NOT TO SCALE

CLEAR FIELD IMAGED TO DIODE

AREA 200 um x 30 um

AMPS/WATT 0.117

CAN FINE-TUNE AERIAL IMAGE FOR DIFFERENT FEATURES

GENERAL PURPOSE

LINES

CONTACTS

ETC.

"LEAF" QUAD

QUASAR

"LEAF" DIPOLE

FREQUENCY DOUBLING *NOT REAL IMAGE

YAG scintillator is placed 10 mm below focus and imaged to an air-side CCD camera. Some vignetting in that imaging relay occurs.

GRIDDED ANNULAR

GRIDDED ANNULAR

HEXAPOLE

QUASAR 2

AERIAL IMAGE VIBRATION LOGS FOR EVERY EXPOSURE

IN-SITU ALIGNMENT MONITOR

BEFORE ALIGN

O.69 hm RMS wavefront error Specification is 0.5 nm

Measurements taken at center of the field

BEFORE ALIGN

AFTER ALIGN

1

0.5

0

-0.5

-1

-1.5

-2

-2.5

0.69 nm RMS wavefront error

Specification is 0.5 nm

RMS wavefront error

Measurements taken at center of the field

-	0.6
_	0.4
	0.2
	0
_	-0.2
_	-0.4
-	-0.6

0.31 nm

BEFORE ALIGN

AFTER ALIGN

0.5

0

-0.5

-1

-1.5

-2

0.69 nm RMS wavefront error

Specification is 0.5 nm

RMS wavefront error

Measurements taken at center of the field

SUBSTRATE

0.31 nm

0.23 nm RMS wavefront error

GENERAL PURPOSE

CONTACTS

HEX CONTACTS

REQUESTS?

MATERIAL PROCESSING

• 200 mm wafers

- 200 mm wafers
- H2O-based processing

- 200 mm wafers
- H2O-based processing
- Non-H2O-based processing

- 200 mm wafers
- H2O-based processing
- Non-H2O-based processing
- 4 hot plates (250C)

- 200 mm wafers
- H2O-based processing
- Non-H2O-based processing
- 4 hot plates (250C)
- 2 chill plates

- 200 mm wafers
- H2O-based processing
- Non-H2O-based processing
- 4 hot plates (250C)
- 2 chill plates
- 1 HMDS (vapor)

- 200 mm wafers
- H2O-based processing
- Non-H2O-based processing
- 4 hot plates (250C)
- 2 chill plates
- 1 HMDS (vapor)
- Ellipsometry / Thickness

H20-BASED PROCESSING

- Plumbed TMAH (2.3 wt. % in H2O)
- Plumbed DI H20
- Plumbed Surfactant Rinse (TBD)
- Spare Plumbed Aqueous
 Developer (TBD)
- Manual Syringe Dispense for everything else

NON-H20-BASED PROCESSING

- Plumbed 2-Heptanone (Develop or Pre-Wet)
- Plumbed 70/30 PGME/PGMEA (Bowl Rinse, EBR, BSR, Pot Rinse)
- Automated syringe dispense for everything else (resists, ULs)
- Split drain for material compatibility

.

USER COMMISSIONING

40 COMMISSIONING SHIFTS

08:00 - 16:00 ENGINEERING

16:00 - 24:00 USER OPS

2 - 3 FOR SETUP 2 - 3 FOR CUSTOMER

WAFERS PER SHIFT

RESOLUTION

General agreement between modeling and printing

RESOLUTION

General agreement between modeling and printing

ASTIGMATISM

Print-based demonstration meets specification

FOCUS CONTROL Well-behaved Bossung curves

FOCUS CONTROL Well-behaved Bossung curves

In-situ diode at wafer and established calibration procedure. Uniformity in spec over 80%. Will be improved. **DOSE CONTROL**

PUPIL CONTROL

Free form capable of all standard shapes and SMO

PUPIL CONTROL

Free form capable of all standard shapes and SMO

ON-BOARD LSI & VIBRATION MONITOR

TRACK TAILORED FOR RESEARCH

SCREEN SK80EX

- 200 mm wafers
- H20-based processing
- Non-H20-based processing
- 4 hot plates (250C)
- 2 chill plates
- 1 HMDS (vapor)
- Ellipsometry / Thickness

TRACK TAILORED FOR RESEARCH

USER COMMISSIONING SHIFTS STARTED IN APRIL AND ARE ONGOING

